K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

lên cymath.com mà giải í

9 tháng 9 2020

\(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)\left(4x-1\right)\)

Áp dụng hằng đẳng thức thứ 3 => (A + B)(A - B) = A2 - B2

=> \(\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=x^2-\left(\frac{1}{2}\right)^2=x^2-\frac{1}{4}\)

=> \(\left(x^2-\frac{1}{4}\right)\left(4x-1\right)=x^2\left(4x-1\right)-\frac{1}{4}\left(4x-1\right)\)

\(=4x^3-x^2-x+\frac{1}{4}\)

Vậy : ....

26 tháng 7 2017

Ta có \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)

\(=\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{2x}{\left(x+2\right)\left(x-2\right)}\)

\(\frac{-4.2x}{\left(x+2\right)^2\left(x-2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{2x}=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)

15 tháng 12 2017

a) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)

b) \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}=\frac{3+6x}{2x+8}\)

15 tháng 3 2020

1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)

15 tháng 3 2020

2, \(\frac{1}{1-x}-\frac{2x}{1-x^2}\)=\(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2x}{\left(1-x\right)\left(1+x\right)}\)=\(\frac{1+x+2x}{\left(1-x\right)\left(1+x\right)}=\frac{3x+1}{\left(1-x\right)\left(1+x\right)}\)

6 tháng 12 2018

\(\frac{4}{x-1}-\frac{2}{1-x}-\frac{x}{x-1}\)

\(=\frac{4}{x-1}+\frac{-2}{x-1}-\frac{x}{x-1}\)

\(=\frac{2-x}{x-1}\)

6 tháng 12 2018

ĐKXĐ: \(x\ne1\)

\(\frac{4}{x-1}-\frac{2}{1-x}-\frac{x}{x-1}\)

\(=\frac{4}{x-1}+\frac{2}{x-1}-\frac{x}{x-1}\)

\(=\frac{4+2-x}{x-1}\)

\(=\frac{6-x}{x-1}\)

14 tháng 4 2019

\(=\frac{\left(2x-4\right)\left(2x+4\right)}{\left(1-x\right)^2}.\frac{1-x}{3x-6}=\frac{\left(2x-4\right)\left(2x+4\right)}{\left(1-x\right)\left(3x-6\right)}\)

28 tháng 3 2020

\(\frac{4x^2-16}{1-2x+x^2}:\frac{3x-6}{1-x}\)

\(=\frac{4x^2-16}{1-2x+x^2}\cdot\frac{1-x}{3x-6}\)

\(=\frac{4\left(x^2-4\right)}{\left(1-x\right)^2}\cdot\frac{1-x}{3\left(x-2\right)}\)

\(=\frac{4\left(x-2\right)\left(x+2\right)}{\left(1-x\right)^2}\cdot\frac{1-x}{3\left(x-2\right)}\)

\(=\frac{4\left(x-2\right)\left(x+2\right)\left(1-x\right)}{\left(1-x\right)^2\cdot3\left(x-2\right)}\)

\(=\frac{4\left(x+2\right)}{3\left(1-x\right)}\)

14 tháng 12 2018

\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)

b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep

c, tt

d, cx r

14 tháng 12 2018

a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)

\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)

\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)

23 tháng 8 2020

Bài làm:

\(\frac{1}{x+2}+\frac{1}{4x^2+15x+14}=\frac{1}{x+2}+\frac{1}{\left(x+2\right)\left(4x+7\right)}\)

\(=\frac{4x+7}{\left(x+2\right)\left(4x+7\right)}+\frac{1}{\left(x+2\right)\left(4x+7\right)}\)

\(=\frac{4x+8}{\left(x+2\right)\left(4x+7\right)}\)

\(=\frac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}=\frac{4}{4x+7}\left(x\ne-2;x\ne-\frac{7}{4}\right)\)

3 tháng 4 2020

a) \(\frac{x^3+4x^2+x-2}{x+1}=\frac{\left(x+1\right)\left(x^2+3x-2\right)}{x+1}=x^2+3x-2\)

b) \(\frac{x-3}{2x-2}+\frac{1}{x-1}=\frac{x^2-2x+1}{2x^2-4x+2}=\frac{\left(x-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-1\right)}=\frac{1}{2}\)