Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=2x^2\left(5x^2-2x+1\right)-3x\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
a. \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
b. \(\left(2x^4-x^3+3x^2\right):\left(\frac{1}{3}x^2\right)\)
\(=\left(2x^4-x^3+3x^2\right).\frac{3}{x^2}\)
\(=0,6x^2-3x+0,9\)
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
P/s : Phá ngoặc ra là ok :
a )
\(\left[4x-2\left(x-3\right)\right].\left(-3x\right)\)
\(=\left[4x-2x+6\right]\left(-3x\right)\)
\(=-12x^2+6x^2-18x\)
b )
\(3\left[x-3\left(4-2x\right)+8\right]\)
\(=3\left[x-12+6x+8\right]\)
\(=3\left[7x-4\right]\)
\(=21x-12\)
c )
\(5\left(3x^2-4y^3\right)+9\left(2x^2-y^3\right)\)
\(=15x^2-20y^3+18x^2-9y^3\)
\(=33x^2-29y^3\)
d )
\(3x^2\left(2y-1\right)-2x^2\left(5y-3\right)\)
\(=6x^2y-3x^2-10x^2y+6x^2\)
\(=-4x^2y+3x^2\)
a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)
\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)
\(=x^2-2x+3\)
b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)
c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)
\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
\(\frac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\frac{x^2\left(3x^2-2x+1\right)-2x\left(3x^2-2x+1\right)-5\left(3x^2-2x+1\right)}{3x^2-2x+1}\)
\(=\frac{\left(3x^2-2x+1\right)\cdot\left(x^2-2x-5\right)}{3x^2-2x+1}\)
\(=x^2-2x-5\)
\(\frac{2x^3-9x^2+19x-15}{x^2-3x+5}\)
\(=\frac{2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)}{x^2-3x+5}\)
\(=\frac{\left(x^2-3x+5\right)\left(2x-3\right)}{x^2-3x+5}\)
\(=2x-3\)
a: \(=xy^2+xy+x-y^3-y^2-y+\dfrac{2}{3}x^3y+\dfrac{1}{3}x^2y^3-2xy-y^3\)
\(=xy^2-xy+x-2y^3-y^2-y+\dfrac{2}{3}x^3y+\dfrac{1}{3}x^2y^3\)
b: \(=2x^3-4x^2+3x^3-3x^2-6x-15+5x^2\)
\(=5x^3-2x^2-6x-15\)
c: \(=x^2-4x+3+\left(x-4\right)\left(2x-1\right)-3x^3+2x-5\)
\(=-3x^3+x^2-2x-2+2x^2-x-8x+4\)
\(=-3x^3+3x^2-11x+2\)