Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(2n^3-5n^2+1\right):\left(2n-1\right)=n^2-2n-1\)
b/ \(x\ne0;\pm2\)
\(\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x-2}{x^2-4}\right):\left(\frac{6}{x+2}\right)\)
\(=\left(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right).\left(\frac{x+2}{6}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)}{6}=-\frac{1}{x-2}=\frac{1}{2-x}\)
c/
\(\left(3x-1\right)^2+2\left(3x-1\right)\left(3x+4\right)+\left(3x+4\right)^2\)
\(=\left(3x-1+3x+4\right)^2\)
\(=\left(6x+3\right)^2\)
a) \(\left(3-2x\right)\left(x+1\right)+x\left(2x-1\right)=3x+3-2x^2-2x+2x^2-x=3\)
b) \(\frac{x^2+9}{x^2+3x}+\frac{6}{x+3}=\frac{x^2+9}{x\left(x+3\right)}+\frac{6x}{x\left(x+3\right)}=\frac{x^2+6x+9}{x\left(x+3\right)}=\frac{\left(x+3\right)^2}{x\left(x+3\right)}=\frac{x+3}{x}\)
c)\(\frac{2+x}{2-x}+\frac{4x^2}{4-x^2}+\frac{x-2}{2+x}=\frac{\left(x+2\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}+\frac{-\left(x-2\right)^2}{\left(2+x\right)\left(2-x\right)}\)
\(=\frac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}=\frac{4x^2+8x}{\left(x+2\right)\left(2-x\right)}=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(2-x\right)}=\frac{4x}{2-x}\)
d) \(\left(x^3+4x^2+6x+4\right):\left(x+2\right)\)
\(=\left(x^3+2x^2+2x^2+4x+2x+4\right):\left(x+2\right)\)
\(=\left[x^2\left(x+2\right)+2x\left(x+2\right)+2\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x^2+2x+2\right)\left(x+2\right):\left(x+2\right)=x^2+2x+2\)
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)
\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)
\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)
\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x-6}{x+2}\)
\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)
\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)
\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)
\(=\frac{-x+1}{3x+6}\)