K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

a) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{1+\sqrt{2}}-2+\sqrt{3}\)

\(=\frac{\sqrt{3}.\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}.\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-2+\sqrt{3}\)

\(=\sqrt{3}+2+\sqrt{2}-2+\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{2}\)

b) \(\frac{-3}{2}.\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2.\left(1+\sqrt{5}\right)^2}\)

\(=\frac{-3}{2}.\sqrt{5-4\sqrt{5}+4}+\sqrt{4^2.\left(1+\sqrt{5}\right)^2}\)

\(=\frac{-3}{2}.\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{4^2}.\sqrt{\left(1+\sqrt{5}\right)^2}\)

\(=\frac{-3}{2}.\left|\sqrt{5}-2\right|+4.\left|1+\sqrt{5}\right|\)

\(=\frac{-3}{2}.\left(\sqrt{5}-2\right)+4\left(1+\sqrt{5}\right)\)

\(=\frac{-3\sqrt{5}}{2}+3+4+4\sqrt{5}\)

\(=\frac{-3\sqrt{5}}{2}+4\sqrt{5}+7\)

\(=\frac{-3\sqrt{5}}{2}+\frac{8\sqrt{5}}{2}+\frac{14}{2}\)

\(=\frac{-3\sqrt{5}+8\sqrt{5}+14}{2}=\frac{14+5\sqrt{5}}{2}\)

NV
13 tháng 6 2019

1/ \(=2+\sqrt{5}-\left|2-\sqrt{5}\right|=2+\sqrt{5}-\sqrt{5}+2=4\)

2/ bạn coi lại đề

3/ \(=\sqrt{2}+1-\left|1-\sqrt{2}\right|=\sqrt{2}+1-\sqrt{2}+1=2\)

4/ \(=\sqrt{3}+2-\left|\sqrt{3}-2\right|=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\)

5/ \(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)

6/ \(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)

13 tháng 6 2019

Các bạn giúp mình với, tối nay mình nộp rồi.

Câu 6 sửa lại đề giúp mình như này nhé:

\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

5 tháng 7 2018

\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)

\(\left(\sqrt{3}+1-\left(\sqrt{3}-1\right)\right)\left(\sqrt{3}+1+\sqrt{3}-1\right)=2\cdot2\sqrt{3}=4\sqrt{3}\)

cách 2 :\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)

\(=\left(\sqrt{4+2\sqrt{3}}\right)^2-\left(\sqrt{4-2\sqrt{3}}\right)^2=4+2\sqrt{3}-\left(4-2\sqrt{3}\right)=4\sqrt{3}\)

5 tháng 7 2018

cách 3 :kết hợp 2 cách trên