Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{98\cdot99\cdot100}\)
\(S=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(S=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4849}{9900}\)
\(\Rightarrow S=\frac{4949}{9900}\div2=\frac{4949}{19800}\)
Nhân 2 vào vế trái
=>1/1.2-1/2.3+...+1/98.99-1/99.100
=1/1.2-1/99.100
Rồi ta chia vế trái cho 2, ta được 1/2(1/1.2-1/99.100)
=> k=2
a/
\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)
\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)
b/
\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)
\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)
c/
\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)
\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)
đặt N=1/1.2.3+1/2.3.4+....+1/98.99.100
=1/2.(2/1.2.3+2/2.3.4+...+2/98.99.100)
=1/2(1/1.2-1/2.3+1/3.4+...+1/98.99-1/99.100)
=1/2(1/2-1/99.100)
=1/2.4949/9900
=4949/19800
a) S=1 + 2 + 2^2 + 2^3 +...+ 2^63
2S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64
S=2S-S=(2 + 2^2 + 2^3 + 6^4 +...+ 2^64)-(1 + 2 + 2^2 + 2^3 +...+ 2^63)
S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64 - 1 - 2 - 2^2 - 2^3 -...- 2^63
S=2^64 - 1
nhân tổng trên cho 2 ta có;
2/1.2.3+2/2.3.4+.........+2/98.99.100
=1/1.2-1/2.3+1/2.3-1/3.4+........+1/98.99-1/99.100
=1/1.2-1/99.100
=4949/9900
/
s= (2/1.2.3 +2/2.3.4+...+2/98.99.100):2= (1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100):2=(1/1.2-1/99.100):2=4949/19800=>S=4949/19800
bài này cô dạy mk rùi, nhưng ko mún viết, mỏi tay