Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)
c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)
d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)
e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)
Nản k lm nữa ^^
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)
a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)
\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)
\(=4\sqrt{10}+4\sqrt{2}\)
c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)
\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)
\(=5\sqrt{7}\)
d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)
\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)
\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)
\(=\dfrac{1+12\sqrt{2}}{4}\)
e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)
\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)
f) bạn xem đề lại nhé
a/\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=2\sqrt{5}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{2\sqrt{5}-10+8}{1-\sqrt{5}}=\frac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\)
b/Đề sai
c/\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\sqrt{2}\left(\frac{3+\sqrt{3}+3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\right)=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
d/ \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
I: Rút gọn
\(A=\sqrt{7-4\sqrt{3}}\\ =\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}\\ =2-\sqrt{3}\)
\(B=\sqrt{19-8\sqrt{3}}\\ =\sqrt{16-2\cdot4\cdot\sqrt{3}+3}\\ =\sqrt{\left(4-\sqrt{3}\right)^2}\\ =4-\sqrt{3}\)
\(C=\sqrt{21-4\sqrt{5}}\\ =\sqrt{20-2\cdot2\sqrt{5}+1}\\ =\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot1+1}\\ =\sqrt{\left(2\sqrt{5}-1\right)^2}\\ =2\sqrt{5}-1\)
Câu D mình làm chưa ra, sorry :<
a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=5-3-\sqrt{5}\)
\(=2-\sqrt{5}\)
b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)
\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)
\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)
\(=2\sqrt{3}+\sqrt{6}\)
c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)
\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)
\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)
\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))
\(=\sqrt{3}+\frac{8}{3}\)
d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
a, \(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=\left(-\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=-1\)
b.\(\sqrt{16+2\sqrt{16.5}+5}+\sqrt{16-2\sqrt{16.5}+5}=\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(4-\sqrt{5}\right)^2}=8\)
d,dat \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow A^2=4+\sqrt{7}+2\sqrt{16-7}+4-\sqrt{7}\)\(A^2=8+6=14\Rightarrow A=\sqrt{14}\)
C,\(\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}=\sqrt{17-4\left(2+\sqrt{5}\right)}=\sqrt{17-8-4\sqrt{5}}=\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)