K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a)

\(\frac{1}{{x - 2}} - \frac{1}{{x + 1}} = \frac{{x + 1}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} - \frac{{x - 2}}{{\left( {x - 2} \right)\left( {x + 1} \right)}}\)

\(= \frac{{x + 1 - x + 2}}{{\left( {x - 2} \right)\left( {x + 1} \right)}} = \frac{3}{{\left( {x - 2} \right)\left( {x + 1} \right)}}\)

b)

\(\begin{array}{l}\frac{{12}}{{{x^2} - 9}} - \frac{2}{{x - 3}} = \frac{{12}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} - \frac{2}{{x - 3}}\\ = \frac{{12}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} - \frac{{2\left( {x + 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{12 - 2{\rm{x}} - 6}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\\ = \frac{{6 - 2{\rm{x}}}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{ - 2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \frac{{ - 2}}{{x + 3}}\end{array}\)

c)

\(\begin{array}{l}\frac{1}{{xy - {x^2}}} - \frac{1}{{{y^2} - xy}} = \frac{1}{{x\left( {y - x} \right)}} - \frac{1}{{y\left( {y - x} \right)}}\\ = \frac{y}{{xy\left( {y - x} \right)}} - \frac{x}{{xy\left( {y - x} \right)}} = \frac{{y - x}}{{xy\left( {y - x} \right)}} = \frac{1}{{xy}}\end{array}\)

d)

 \(\begin{array}{l}\frac{{2{\rm{x}}}}{{{x^2} - 1}} - \frac{3}{{2 + 2{\rm{x}}}} + \frac{1}{{2 - 2{\rm{x}}}}\\ = \frac{{2{\rm{x}}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{3}{{2\left( {x + 1} \right)}} - \frac{1}{{2{\rm{x}} - 2}}\\ = \frac{{2{\rm{x}}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{3\left( {x - 1} \right)}}{{2\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{1}{{2\left( {x - 1} \right)}}\\ = \frac{{{\rm{4x}}}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}} - \frac{{3\left( {x - 1} \right)}}{{2\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{1\left( {x + 1} \right)}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{{\rm{4x}} - 3{\rm{x}} + 3 - x - 1}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{2}{{2\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{1}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\left( {\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}}} \right)\\ = \frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} - 1 + 2{\rm{x}} + 1 - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {4{\rm{x}} - 1} \right)\left( {4{\rm{x + 1}}} \right)}}.\frac{{4{\rm{x}} - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{1}{{4{\rm{x}} + 1}}\\b)\left( {\frac{{x + y}}{{xy}} - \frac{2}{x}} \right).\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{x + y - 2y}}{{xy}}.\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{\left( {x - y} \right).{x^3}{y^3}}}{{xy\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}} = \frac{{{x^2}{y^2}}}{{{x^2} + xy + y{}^2}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} = \frac{z}{{xyz}} + \frac{x}{{xyz}} + \frac{y}{{xyz}} = \frac{{z + x + y}}{{xyz}}\)

\(\begin{array}{l}b)\frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} + \frac{{3{\rm{x}}y}}{{{y^2} - 4{{\rm{x}}^2}}}\\ = \frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} - \frac{{3{\rm{x}}y}}{{4{{\rm{x}}^2} - {y^2}}}\\ = \frac{{x\left( {2{\rm{x}} + y} \right) + y\left( {2{\rm{x}} - y} \right)  - 3{\rm{x}}y}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}}\\ = \frac{{2{{\rm{x}}^2} + xy + 2{\rm{x}}y - {y^2} - 3{\rm{x}}y}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}} = \frac{{2{{\rm{x}}^2} - {y^2}}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}}\end{array}\)

9 tháng 9 2023

\(a,\dfrac{3x-1}{xy}+\dfrac{2x-1}{xy}\\ =\dfrac{3x-1+2x-1}{xy}\\ =\dfrac{5x-2}{xy}\\ b,\dfrac{3x}{x^2+1}+\dfrac{-3x+1}{x^2+1}\\=\dfrac{3x-3x+1}{x^2+1}\\ =\dfrac{1}{x^2+1}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)\frac{1}{x} + \frac{2}{{x + 1}} + \frac{3}{{x + 2}} - \frac{1}{x} - \frac{2}{{x - 1}} - \frac{3}{{x + 2}}\\ = \left( {\frac{1}{x} - \frac{1}{x}} \right) + \left( {\frac{2}{{x + 1}} - \frac{2}{{x - 1}}} \right) + \left( {\frac{3}{{x + 2}} - \frac{3}{{x + 2}}} \right)\\ = 0 + \frac{2}{{x + 1}} - \frac{2}{{x - 1}} + 0\\ = \frac{{2\left( {x - 1} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{2{\rm{x}} - 2 - 2{\rm{x}} - 2}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\end{array}\)

\(\begin{array}{l}b)\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{3}{{{x^2} - 9}} + \frac{{1 - 2{\rm{x}}}}{x} + \frac{{x - 1}}{{2{\rm{x}} + 1}} - \frac{3}{{x + 3}}\\ = \left( {\frac{{2{\rm{x}} - 1}}{x} + \frac{{1 - 2{\rm{x}}}}{x}} \right) + \left( {\frac{{1 - x}}{{2{\rm{x}} + 1}} + \frac{{x - 1}}{{2{\rm{x}} + 1}}} \right) + \left( {\frac{3}{{{x^2} - 9}} - \frac{3}{{x + 3}}} \right)\\ = 0 + 0 + \frac{3}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{3}{{x + 3}}\\ = \frac{{3 - 3\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{12 - 3{\rm{x}}}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có: \(\frac{5}{{2 - x}} = \frac{{ - 5}}{{x - 2}}\)

\({x^2} - 4{\rm{x}} + 4 = {\left( {x - 2} \right)^2}\)

\(MTC = \left( {x + 2} \right){\left( {x - 2} \right)^2}\)

Nhân tử phụ của x+2 là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của\({x^2} - 4{\rm{x}} + 4\)  là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của x - 2 là (x+2)(x−2)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{{x + 1}}{{{x^2} - 4{\rm{x  -  4}}}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{5}{{2 - x}} = \frac{{ - 5\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\end{array}\)

b) Ta có: 3x+3y=3(x+y)

            \({x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)\)

            \({x^2} + 2{\rm{x}}y + {y^2} = {\left( {x - y} \right)^2}\)

\(MTC = 3\left( {x + y} \right){\left( {x - y} \right)^2}\)

Nhân tử phụ của 3x+3y là: \({\left( {x - y} \right)^2}\)

Nhân tử phụ của \({x^2} - {y^2}\) là: 3(x−y)

Nhân tử phụ của \({x^2} + 2{\rm{x}}y + {y^2}\) là: 3(x+y)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có: 

\(\begin{array}{l}\frac{1}{{3{\rm{x}} + 3y}} = \frac{{{{\left( {x - y} \right)}^2}}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}} = \frac{{6{\rm{x}}\left( {x - y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \frac{{3\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{{x^2} - 3{\rm{x}} + 1}}{{2{{\rm{x}}^2}}} + \frac{{5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{{x^2} - 3{\rm{x}} + 1 + 5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{2{\rm{x}}}}{{2{{\rm{x}}^2}}}\)

\(b)\frac{y}{{x - y}} + \frac{x}{{x + y}} = \frac{{y\left( {x + y} \right) + x\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{xy + {y^2} + {x^2} - xy}}{{{x^2} - {y^2}}} = \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\)

\(c)\frac{x}{{2{\rm{x}} - 6}} + \frac{9}{{2{\rm{x}}\left( {3 - x} \right)}} = \frac{x}{{2\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2}}}{{2{\rm{x}}\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2} - 9}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{x + 3}}{{2{\rm{x}}}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{ - 3{\rm{x}}}}{{5{\rm{x}}{y^2}}}.\frac{{ - 12{\rm{x}}y}}{{5{y^2}}} = \frac{{36{{\rm{x}}^2}y}}{{25{\rm{x}}{y^4}}}\)

b) \(\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}:\frac{4{{\text{x}}^{2}}+4\text{x}+1}{4{{\text{x}}^{2}}+2\text{x}+1}=\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}.\frac{4{{\text{x}}^{2}}+2\text{x}+1}{4{{\text{x}}^{2}}+4\text{x}+1}\)

\(=\frac{\left( 2\text{x}-1 \right)\left( 2\text{x}+1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right)}{\left( 2\text{x}-1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right){{\left( 2\text{x}+1 \right)}^{2}}}=\frac{1}{2\text{x}+1}\).

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{3 - 2{\rm{x}}}}{{x - 1}} - \frac{{2 + 5{\rm{x}}}}{{x - 1}} = \frac{{3 - 2{\rm{x}} - \left( {2 + 5{\rm{x}}} \right)}}{{x - 1}} = \frac{{3 - 2{\rm{x}} - 2 - 5{\rm{x}}}}{{x - 1}} = \frac{{1 - 7{\rm{x}}}}{{x - 1}}\)

\(b)\frac{1}{{4{{\rm{x}}^2}y}} - \frac{1}{{6{\rm{x}}{y^2}}} = \frac{{3y}}{{12{{\rm{x}}^2}y{}^2}} - \frac{{2{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}} = \frac{{3y - 2{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(a)\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}} = \frac{{5 - 3{\rm{x  -  }}\left( { - 2 + 5{\rm{x}}} \right)}}{{x + 1}} = \frac{{5 - 3{\rm{x}} + 2 - 5{\rm{x}}}}{{x + 1}} = \frac{{7 - 8{\rm{x}}}}{{x + 1}}\)

\(b)\frac{x}{{x - y}} - \frac{y}{{x + y}} = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\)

\(\begin{array}{l}c)\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}} \\ = \frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \frac{{3\left( {{x^2} - x + 1} \right) - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \frac{{3{{\rm{x}}^2} - 3{\rm{x}} + 3 - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\end{array}\)