Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
=\(\dfrac{3}{2}.\dfrac{56}{305}\)
= \(\dfrac{78}{305}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\) ⇔ \(x^2-4=0\) hoặc \(6-2x=0\)
*Nếu \(x^2-4=0\)
⇒ x2 = 4
⇒ x ∈ {2 ; -2}
*Nếu \(6-2x=0\)
⇒2x = 6
⇒ x = 6 : 2 = 3
Vậy x ∈ { -2 ; 2 ; 3 }
S1 = 1+2+3+...+999
Số số hạng là: ( 999 - 1 ) : 1 + 1 = 999
Tổng là: ( 999 + 1 ) . 999 : 2 = 499500
S2 = 10+12+14+...+2018
Số số hạng là: ( 2018 - 10 ) : 2 + 1 = 1005
Tổng là: ( 2018 + 10 ) . 1005 : 2 = 1019070
3. Câu hỏi của Nguyễn Huyền Như - Toán lớp 6 - Học toán với OnlineMath
a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)
\(\Leftrightarrow3\left(x-2\right)=5x\)
\(\Leftrightarrow3x-6=5x\)
\(\Leftrightarrow5x-3x=6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)
\(\Leftrightarrow4x+92=2x+80\)
\(\Leftrightarrow4x-2x=80-92\)
\(\Leftrightarrow2x=-12\)
\(\Leftrightarrow x=-6\)
c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)
d, \(B=1+2+2^2+........+2^{2017}\)
\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)
\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)
\(< =>3x-6=5x=>x=-3\)
\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)
\(4x+92=3x+120=>x=28\)
a) Ta có :
\(A=1+2+2^2+2^3+....................+2^{2010}\) (\(2010\) số hạng)
\(2A=2+2^2+............+2^{2010}+2^{2011}\)
\(\Rightarrow2A-A=\left(2+2^2+..........+2^{2011}\right)-\left(1+2+.............+2^{2010}\right)\)
\(A=2^{2011}-1\)
b) Ta có :
\(B=1-3+3^2-3^3+...............+3^{100}\)(\(100\) số hạng)
\(3B=3-3^2+3^3+.....+3^{99}-3^{100}+3^{101}\)
\(\Rightarrow3B+B=\left(1-3+.......+3^{100}\right)+\left(3-3^2+....-3^{100}+3^{101}\right)\)
\(4B=3^{101}+1\)
~ Chúc bn học tốt ~
2)
\(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3.6}+\dfrac{3}{6.9}+\dfrac{3}{9.12}+...+\dfrac{3}{30.33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}.\dfrac{10}{33}\)
\(=\dfrac{10}{99}\)
N=\(\dfrac{2^{10}.13+2^9+130}{2^8.104}\)
N=\(\dfrac{13312+642}{26624}\)
N=\(\dfrac{3954}{26624}\)=\(\dfrac{6977}{13312}\)
Sửa đề: \(C=1+3^1+3^2+...+3^{100}\)
b) Ta có: \(C=1+3^1+3^2+...+3^{100}\)
\(\Leftrightarrow3\cdot C=3+3^2+...+3^{101}\)
\(\Leftrightarrow C-3\cdot C=1+3+3^2+...+3^{100}-3-3^2-...-3^{100}-3^{101}\)
\(\Leftrightarrow-2\cdot C=1-3^{101}\)
hay \(C=\dfrac{3^{101}-1}{2}\)
b) Ta có: C=1+31+32+...+3100C=1+31+32+...+3100
⇔3⋅C=3+32+...+3101⇔3⋅C=3+32+...+3101
⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101⇔C−3⋅C=1+3+32+...+3100−3−32−...−3100−3101
⇔−2⋅C=1−3101