Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{X-1}-\frac{X^3-X}{X^2+1}\left(\frac{1}{X^2-2X+1}+\frac{1}{1-X^2}\right)\)
=\(\frac{1}{X-1}-\frac{X^3-X}{X^2+1}.\frac{X+1+X-1}{\left(X-1\right)^2\left(X+1\right)}\)
=\(\frac{1}{X-1}-\frac{X\left(X^2-1\right)}{X^2+1}.\frac{2X}{\left(X-1\right)^2\left(X+1\right)}\)
\(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
\(=\left(\frac{x+1}{\left(x-1\right)^2}+\frac{x-1}{\left(x-1\right)^2}\right).\frac{x-1}{x}-\frac{2}{x-1}\)
\(=\frac{2x}{\left(x-1\right)^2}.\frac{x-1}{x}-\frac{2}{x-1}\)
\(=\frac{2}{x-1}-\frac{2}{x-1}=0\)
Ta có:\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2+2}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4+4}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{8+8}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\frac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{16+16}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\frac{32}{1-x^{32}}\)
\(\frac{4}{x-1}+\frac{2}{1-x}+\frac{x}{x-1}\)
\(=\frac{4}{x-1}-\frac{2}{x-1}+\frac{x}{x-1}\)
\(=\frac{4-2+x}{x-1}\)
\(=\frac{2+x}{x-1}\)
P/s tham khảo nha
\(\frac{x-3}{x+1}-\frac{x+2}{x-1}-\frac{8x}{1-x^2}\)
\(=\) \(\frac{x-3}{x+1}-\frac{x+2}{x-1}+\frac{8x}{x^2-1}\)
\(=\)\(\frac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8x}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{\left(x-3\right)\left(x-1\right)-\left(x+2\right)\left(x+1\right)+8x}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{x^2-x-3x+3-x^2-x-2x-2+8x}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\) \(\frac{1}{x-1}\)
a) \(\frac{x^2}{x-1}-\frac{2x}{x-1}+\frac{1}{x-1}\)
\(=\frac{x^2-2x+1}{x-1}\)
\(=\frac{\left(x-1\right)^2}{x-1}=x-1\)
b) \(\left(\frac{1}{1-2x}+\frac{1}{1+2x}\right):\frac{1}{1-2x}\)
\(=\left(\frac{1+2x}{\left(1-2x\right)\left(1+2x\right)}+\frac{1-2x}{\left(1+2x\right)\left(1-2x\right)}\right):\frac{1}{1-2x}\)
\(=\frac{2}{\left(1-2x\right)\left(1+2x\right)}.\left(1-2x\right)\)
\(=\frac{2}{1+2x}\)
\(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{x+1}\right)\left(1+\frac{1}{x+2}\right)...\left(1+\frac{1}{x+99}\right)\)
\(=\frac{x+1}{x}.\frac{x+2}{x+1}.\frac{x+3}{x+2}...\frac{x+100}{x+99}=\frac{\left(x+1\right)\left(x+2\right)\left(x+3\right)...\left(x+100\right)}{x\left(x+1\right)\left(x+2\right)...\left(x+99\right)}=\frac{x+100}{x}\)