Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
\(a.\)
\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
\(=\left(x-5\right)\left(x+5\right).\dfrac{3x-7}{2\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)
\(b.\)
\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)
\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}.\dfrac{5\left(x-1\right)}{3\left(x+3\right)}\)
\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right).5\left(x-1\right)}{5\left(x-1\right)^2.3\left(x+1\right)}\)
\(=\dfrac{x}{3\left(x-1\right)}\)
\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}=\dfrac{5x\left(x+1\right)\left(x-1\right)}{15\left(x-1\right)^2\left(x+1\right)}=\dfrac{x}{3\left(x-1\right)}\)\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)
\(a,=\dfrac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\dfrac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{-8x}{\left(x-2\right)^2\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
\(b,=\dfrac{5x^2+26xy+5y^2+5x^2-26xy+5y^2}{x\left(x-5y\right)\left(x+5y\right)}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\\ =\dfrac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{10}{x}\)
\(\dfrac{18x}{x^3-9x}-\dfrac{2-x}{x+3}+\dfrac{3}{3-x}\)
=\(\dfrac{18x}{x\left(x^2-9\right)}-\dfrac{\left(2-x\right)\left(x-3\right)x}{\left(x+3\right)\left(x-3\right)x}-\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)x}\)
=\(\dfrac{18x-\left(2-x\right)\left(x-3\right)x-3x\left(x+3\right)}{x\left(x+3\right)\left(x-3\right)}\)
=\(\dfrac{18x-\left(2x-6-x^2+3x\right)x-3x^2-9x}{x\left(x+3\right)\left(x-3\right)}\)
=\(\dfrac{18x-2x^2+6x+x^3-3x^2-3x^2-9x}{x\left(x+3\right)\left(x-3\right)}\)
=\(\dfrac{x^3-8x^2+15x}{x\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{x\left(x^2-8x+15\right)}{x\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{x^2-3x-5x+15}{x\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{x\left(x-3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{\left(x-3\right)\left(x-5\right)}{\left(x-3\right)\left(x+3\right)}\)
=\(\dfrac{\left(x-5\right)}{x+3}\)
\(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)
\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)
\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x+1}+\dfrac{-\left(x+3\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}+\dfrac{-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{\left(3x+1\right)\left(x+1\right)-\left(x-1\right)^2-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{3x^2+4x+1-\left(x^2-2x+1\right)-\left(x^2+2x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x^2+x+3x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x+3}{\left(x-1\right)^2}\)
\(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)
\(=\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}+\dfrac{-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{x^2+3x+x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}=\dfrac{x+3}{\left(x-1\right)^2}\)
Ta có :\(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x}\)
\(=\frac{4\left(x-2\right)\left(4-x\right)}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}+\frac{2\left(x+2\right)\left(4-x\right)}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)\(+\frac{\left(5x-6\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(=\frac{24x-8x^2-32}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}+\frac{4x-2x^2+16}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)\(+\frac{5x^2+4x-12}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(=\frac{24x-8x^2-32+4x-2x^2+16+5x^2+4x-12}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
\(=\frac{32x-5x^2-28}{\left(x+2\right)\left(x-2\right)\left(4-x\right)}\)
a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
Giải:
a) \(1\dfrac{1}{2}.2\dfrac{1}{3}+1\dfrac{1}{3}.\dfrac{1}{2}\)
\(=\dfrac{3}{2}.\dfrac{7}{3}+\dfrac{4}{3}.\dfrac{1}{2}\)
\(=\dfrac{21}{6}+\dfrac{4}{6}\)
\(=\dfrac{1}{6}\left(21+4\right)\)
\(=\dfrac{25}{6}\)
b) \(\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}.2\dfrac{2}{145}+\dfrac{2}{145}\)
\(=\dfrac{1}{9}.\dfrac{2}{145}-\dfrac{13}{3}.\dfrac{292}{145}+\dfrac{2}{145}\)
\(=\dfrac{2}{145}\left(\dfrac{1}{9}-\dfrac{13}{3}.146+1\right)\)
\(=\dfrac{2}{145}\left(-\dfrac{5684}{9}\right)\)
\(=-\dfrac{392}{45}\)
Vậy ...
Sửa đề: \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\)
\(=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)