K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\) 

b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)

c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)

6 tháng 7 2017

câu b với câu c giải thích ra dùm e đc kh ạ?

6 tháng 7 2019

\(\frac{9\sqrt{6}-12\sqrt{3}}{3\sqrt{6}-3\sqrt{3}}=\frac{3\sqrt{3}\left(3\sqrt{2}-4\right)}{\sqrt{3}\left(\sqrt{2}-1\right)}=\frac{3\sqrt{2}-4}{\sqrt{2}-1}\)

\(a,\frac{13\sqrt{12}-4\sqrt{6}}{24-4\sqrt{3}}=\frac{13\sqrt{12}-\sqrt{8}.\sqrt{12}}{2\sqrt{12}.\sqrt{12}}=\frac{13-\sqrt{8}}{2\sqrt{12}}\)

14 tháng 7 2019

\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)

\(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)

==================================================

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

===========================================================

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

================================================================

3 tháng 7 2019

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\sqrt{2}+1\)

3 tháng 7 2019

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

28 tháng 7 2016

a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)

\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}-1}\)

\(=\sqrt{4-\sqrt{5}}\)

c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=3-2=1\)

d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)

\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)

\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)

\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}-1+\sqrt{3+1}\)

\(=2\sqrt{3}\)

 

 

 

 

17 tháng 7 2017

a,\(\sqrt{\left(\sqrt{3}-1\right)^2}\) \(+\sqrt{\left(\sqrt{3}+1\right)^2}=2\sqrt{3}\)

b. \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=3\sqrt{5}\)

c,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=4\)

d.\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2\sqrt{2}\)

a. \(\sqrt{18}-\dfrac{1}{2}\sqrt{48}-\sqrt{8}+\dfrac{4-5\sqrt{2}}{5-2\sqrt{2}}\)

\(=3\sqrt{2}-2\sqrt{3}-2\sqrt{2}+\dfrac{\left(4-5\sqrt{2}\right)\left(2+5\sqrt{2}\right)}{\left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right)}\)

\(=3\sqrt{2}-2\sqrt{3}-2\sqrt{2}+\dfrac{-17\sqrt{2}}{17}\)

\(=3\sqrt{2}-2\sqrt{3}-2\sqrt{2}-\sqrt{2}\)

\(=-2\sqrt{3}\)

b. \(\dfrac{\sqrt{15}-2\sqrt{3}}{2-\sqrt{5}}+6\sqrt{\dfrac{1}{3}}+\dfrac{13}{\sqrt{3}-4}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{2-\sqrt{5}}+2\sqrt{3}+\dfrac{13\left(\sqrt{3}+4\right)}{\left(\sqrt{3}-4\right)\left(\sqrt{3}+4\right)}\)

\(=\dfrac{-\sqrt{3}\left(\sqrt{5}-2\right)}{2-\sqrt{5}}+2\sqrt{3}+\dfrac{13\left(\sqrt{3}+4\right)}{-13}\)

\(=-\sqrt{3}+2\sqrt{3}-\sqrt{3}-4\)

\(=-4\)

Xong r nhaehihi

❤☘

5 tháng 8 2017

\(A=\sqrt{2+2\sqrt{\frac{3}{4}}}+\sqrt{2-2\sqrt{\frac{3}{4}}}\)

\(A=\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2+2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}\right)^2-2\sqrt{\frac{3}{2}.\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)

\(A=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)

\(A=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)

\(A=2\sqrt{\frac{3}{2}}=\sqrt{4.\frac{3}{2}}=\sqrt{6}\)

22 tháng 5 2018

\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=|2+\sqrt{3}|+|2-\sqrt{3}|\)\(=2+\sqrt{3}+2-\sqrt{3}=4\)

11 tháng 6 2018

\(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)

\(=\frac{\sqrt{7}-5}{2}-\frac{6+2\sqrt{7}}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^2-2^2}-\frac{5\left(4-\sqrt{7}\right)}{4^2-\left(\sqrt{7}\right)^2}\)

\(=\frac{\sqrt{7}-5}{2}-\frac{6+2\sqrt{7}}{4}+\frac{6\sqrt{7}+12}{3}-\frac{20-5\sqrt{7}}{8}\)

\(=\frac{12\left(\sqrt{7}-5\right)}{24}-\frac{6\left(6+2\sqrt{7}\right)}{24}+\frac{8\left(6\sqrt{7}+12\right)}{24}-\frac{3\left(20-5\sqrt{7}\right)}{24}\)

\(=\frac{12\sqrt{7}-60-36-12\sqrt{7}+48\sqrt{7}+96-60+15\sqrt{7}}{24}\)

\(=\frac{-60+63\sqrt{7}}{24}\)