Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4.5.6}{14.15.16}\)=\(\frac{1.1.3}{7.3.4}\)=\(\frac{1.1.1}{7.1.4}\)=\(\frac{1}{28}\)
=1/5+2/5+51/85+4/5
=7/5+51/85
=119/85+51/85
=170/85=2
k điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
a) \(\frac{9}{22}.\frac{33}{18}=\frac{9.33}{22.18}=\frac{297}{396}=\frac{3}{4}\)
b) \(\frac{12}{35}:\frac{36}{25}=\frac{12}{35}.\frac{25}{36}=\frac{12.25}{35.36}=\frac{300}{1260}=\frac{5}{21}\)
c) \(\frac{19}{17}:\frac{76}{51}=\frac{19}{17}.\frac{51}{76}=\frac{19.51}{17.76}=\frac{969}{1292}=\frac{3}{4}\)
a) = 34/31 - 3/31 - 19/28 = 1 - 19/28 = 9/28
b) 18/13 - 5/13 + 55/46 = 1 + 55/46 = 101/46
c) 7/3 - 4/3 + 11/5 = 1 + 11/5 = 16/5
d) ( 27/25 - 2/25 ) - ( 5/9 + 4/9 ) = 1 - 1 = 0
e) 2,125 + 43/8 + 7,15 + 137/20 + 7,5
= 2,125 + 5,375 + 7,15 + 6,85 + 7,5
= 7,5 + 14 + 7,5
= 7,5 + 7,5 + 14
= 15 + 14
= 29
a) Nhóm 34/31 với 3/31
b) Nhóm 18/13 với 5/13
c) Nhóm 7/3 với 4/3
d) Phá ngoặc ra rồi tính
e) Bêến đổi đều thành phân số rồi tính
\(\left(X+\frac{1}{1.3}\right)+\left(X+\frac{1}{3.5}\right)+...+\left(X+\frac{1}{23.25}\right)=11.X+\)\(\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Leftrightarrow12X+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)+11X\)\(+\frac{\left(1+\frac{1}{3}+...+\frac{1}{81}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)}{2}\)
\(\Leftrightarrow X+\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\right)=\frac{242}{243}:2\)
\(\Leftrightarrow X+\frac{12}{25}=\frac{121}{243}\)
\(\Leftrightarrow X=\frac{109}{6075}\)
Vậy X=109/6075
Chắc Sai kết quả chứ công thức đúng nha!!!...
Fighting!!!...
Đặt:
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}=\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{25-23}{23.25}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Đặt \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(2B=\frac{242}{243}\Rightarrow B=\frac{121}{243}\)
Giải phương trình:
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{243}\right)\)
\(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{242}\right)\)
\(12x+\frac{12}{25}=11x+\frac{121}{243}\)
\(12x-11x=\frac{121}{243}-\frac{12}{25}\)
\(x=\frac{109}{6075}\)