Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)
\(A=\dfrac{x^2-2x}{x^2+x-6}.\dfrac{x^2-9}{x^2-3x}\)
\(A=\dfrac{x\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}.\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)
\(A=\dfrac{x}{\left(x+3\right)}.\dfrac{\left(x+3\right)}{x}=1\)
\(b,\)
\(B=\dfrac{2x^2+5x-3}{x^2-9}.\dfrac{4x^2-1}{x^2-6x+9}\)
\(B=\dfrac{\left(x+3\right)\left(2x-1\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(x-3\right)^2}\)
\(B=\dfrac{\left(2x-1\right)}{\left(x-3\right)}.\dfrac{\left(2x-1\right)\left(2x+1\right)}{\left(x-3\right)^2}\)
\(B=\dfrac{\left(2x-1\right)^2.\left(2x+1\right)}{\left(x-3\right)^3}\)
dễ thì giải cho người ta đi,bạn thông minh hơn thì thay vì ns người khác thì giúp người khác sẽ tốt hơn đó
a/ \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^2}=\dfrac{2\left(x^2-10x+25\right)\cdot\left(x^2-1\right)}{3\left(x+1\right)\cdot4\left(x-5\right)^2}=\dfrac{2\left(x-5\right)^2\left(x-1\right)\left(x+1\right)}{12\left(x+1\right)\left(x-5\right)^2}=\dfrac{x+1}{6}\)
b/ \(\dfrac{6x-3}{5x^2+x}\cdot\dfrac{25x^2+10x+1}{1-8x^2}=-\dfrac{3\left(1-2x\right)\cdot\left(5x+1\right)^2}{x\left(5x+1\right)\left(1-2x\right)\left(1+2x+4x^2\right)}=\dfrac{3\left(5x+1\right)}{x\left(4x^2+2x+1\right)}\)
c/ \(\dfrac{3x^2-x}{x^2-1}\cdot\dfrac{1-x^4}{\left(1-3x\right)^3}=\dfrac{x-3x^2}{1-x^2}\cdot\dfrac{\left(1-x^2\right)\left(1+x^2\right)}{\left(1-3x\right)^3}=\dfrac{x\left(1-3x\right)\left(1-x^2\right)\left(1+x^2\right)}{\left(1-x^2\right)\left(1-3x\right)^3}=\dfrac{x\left(x^2+1\right)}{\left(1-3x\right)^3}\)
câu nào cũng ghi lại đề nha
a) \(x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b)\(x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\left(x+1\right)\left(x+2\right)+\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1+x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{1}{x-2}+3-\dfrac{3-x}{x-2}=0\)
\(\Leftrightarrow\dfrac{1+3\left(x-2\right)-\left(3-x\right)}{x-2}=0\)
\(\Leftrightarrow\dfrac{1+3x-6-3+x}{x-2}=0\) ( đk \(x\ne2\) )
\(\Leftrightarrow4x-8=0\Rightarrow x=2\)
đ) \(\dfrac{8-x}{x-7}-8-\dfrac{1}{x-7}=0\)
\(\Leftrightarrow\dfrac{8-x-8\left(x-7\right)-1}{x-7}=0\) (đk \(x\ne7\))
\(\Leftrightarrow8-x-8x+56-1=0\)
\(\Leftrightarrow-9x+63=0\)
\(\Leftrightarrow x=7\)
\(a,\dfrac{x^2-2x}{x^2-4}=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
b) \(\dfrac{x^2+5x+4}{x^2-1}=\dfrac{x^2+x+4x+4}{x^2-1}=\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+4}{x-1}\)
c) \(\dfrac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)
\(=\dfrac{x^4+4x^2-4x^2+4}{x^3+2x-2x^2-x^2+2x-1-1}\)
\(=\dfrac{\left(x^2+2\right)^2-4x^2}{\left(x^3+2x-2x^2\right)-\left(x^2-2x+2\right)}\)
\(=\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x\left(x^2+2-2x\right)-\left(x^2+2-2x\right)}\)
\(=\dfrac{x^2+2+2x}{x-1}\)
Bài 2:
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{10}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{1-2x+x^2}{x\left(x+1\right)}:\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{1}{x+1}\)
c) Trong ngoặc giữa hai phân số là dấu gì vậy ?
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
a/ \(\dfrac{x^3}{x^2+1975}\cdot\dfrac{2x+1954}{x+1}+\dfrac{x^3}{x^2+1975}\cdot\dfrac{21-x}{x+1}=\dfrac{x^3\left(2x+1954\right)+x^3\left(21-x\right)}{\left(x^2+1975\right)\left(x+1\right)}=\dfrac{2x^4+1954x^3+21x^3-x^4}{\left(x^2+1975\right)\left(x+1\right)}=\dfrac{x^4+1975x^3}{\left(x^2+1975\right)\left(x+1\right)}\)
b/ \(\dfrac{19x+8}{x-7}\cdot\dfrac{5x-9}{x+1945}+\dfrac{19x+8}{x^2+1945}\cdot\dfrac{x-2}{x-7}=\dfrac{\left(19x+8\right)\left(5x-9\right)+\left(19x+8\right)\left(x-2\right)}{\left(x-7\right)\left(x+1945\right)}=\dfrac{\left(19x+8\right)\left(5x-9+x-2\right)}{\left(x-7\right)\left(x+1945\right)}=\dfrac{114x^2-209x+40x-88}{\left(x-7\right)\left(x+1945\right)}=\dfrac{114x^2-169x-88}{x^2+1938x-13615}\)
c/ \(\dfrac{x+1}{x^2-2x-8}\cdot\dfrac{4-x}{x^2+x}=\dfrac{\left(x+1\right)\left(4-x\right)}{x\left[x^2-4x+2x-8\right]\left(x+1\right)}=-\dfrac{x-4}{x\left(x-4\right)+2\left(x-4\right)}=-\dfrac{x-4}{\left(x-4\right)\left(x+2\right)}=-\dfrac{1}{x+2}\)