Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VP=\left(a+b\right)\left(a^{2n}-a^{2n-1}.b+a^{2n-2}.b^2+...+a^{2n}.b^{2n-2}-a.b^{2n-1}+b^{2n}\right)\)
\(=a^{2n+1}-a^{2n}.b+a^{2n-1}b^2+...+a^2.b^{2n-1}+a.b^{2n}+a^{2n}.b-a^{2n-1}.b^2+....-a.b^{2n}+b^{2n+1}\)
\(=a^{2n+1}+b^{2n+1}=VT\)
Vậy.....................(đpcm)
Chúc bạn học tốt!!!
Ta có:VT=\(\left(a+b\right)\left(a^{2n}-a^{2n-1}b+...-b^{2n}\right)\)
=\(a^{2n+1}-a^{2n}b+...+a^{2n}b+b^{2n}\)(Triệt tiêu hết )
=\(a^{2n+1}+b^{2n+1}\)(đpcm)
Bài làm :
\(a,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)
\(=8x+16-5x^2-10x+\left(4x-8\right)\left(x+1\right)+2\left(x^2-2^2\right)+10\)
\(=8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2-8+10\)
\(=\left(8x-10x+4x-8x\right)+\left(-5x^2+4x^2+2x^2\right)+\left(16-8-8+10\right)\)
\(=-6x+x^2+10\)
a)\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)\(=8x+16-5x^2-2+4x-8x-8+2x-4x-4+10\)\(=\left(8x+4x-8x+2x-4x\right)+\left(16-2-8-4+10\right)+5x^2\)
\(=2x+12+5x^2\)
b)\(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4x-4x-20-\left[x^2+5x+2x+10\right]-3\left[x^2+2x-1x-2\right]\)
\(=4x-4x-20-x^2-5x-2x-10-3x^2-6x+3x+6\)
\(=\left(4x-4x-5x-2x-6x+3x\right)+\left(-20-10+6\right)+\left(-x^2-3x^2\right)\)
\(=-10x-24-4x^2\)
c)\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\)
Xét tích \(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\Leftrightarrow\left(x^n\right)^3-\left(y^n\right)^3=x^{3n}-y^{3n}\)
Thay vào bt đã cho ta có \(\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(\Leftrightarrow\left(x^{3n}\right)^2-\left(y^{3n}\right)^2=x^{6n}-y^{6n}\)
Bài 2:
a: \(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\cdot\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\cdot\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=2n\left(2n-2\right)\left(2n-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>4n(n-1) chia hết cho 8
=>4n(n-1)(2n-1) chia hết cho 8
b: \(n^3-19n=n^3-n-18n\)
\(=n\left(n-1\right)\left(n+1\right)-18n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>n(n-1)(n+1)-18n chia hết cho 6
a) Ta có:
A = (n4 + n3) + (n3 + n2) + (n2 + n) + (n + 1)
A = n3(n + 1) + n2(n + 1) + n(n + 1) + (n + 1)
A = (n3 + n2 + n + 1)(n + 1)
A = [n2(n + 1) + (n + 1)](n + 1)
A = (n2 + 1)(n + 1)2
Để A là số chính phương thì n2 + 1 là số chính phương.
ta có:
(a+b)( a^2n-1 - a^2n-2.b+...-b^2n-1)
= a^2n - a^2n-1.b + ....- ab^2n-1 + a^2n-1b-....- b^2n
= a^2n-b^2n