Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cây cam là:
120 : ( 2 + 3 ) x 2 = 48 (cây)
Số cây xoài là:
( 1 + 5 ) = 20 ( cây )
Số cây chanh là:
120 - ( 48 + 20 ) = 52 ( cây )
Đáp số : cam : 48 cây
xoài : 20 cây
chanh : 52 cây.
ai trên 10 điểm thì mình nha
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3+25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3+5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1+7\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{2}{12}-\frac{5.8}{9}=\frac{1}{6}-\frac{40}{9}=\frac{-77}{18}\)
b ) 3n+2 - 2n+2 + 3n - 2n
= ( 3n+2 + 3n ) - ( 2n+2 + 2n )
= 3n ( 32 + 1 ) - 2n ( 22 + 1 )
= 3n.10 - 2n-1.2.5
= 3n.10 - 2n-1.10
= ( 3n - 2n-1 ).10 chia hết cho 10 ( đpcm )
a) A = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
=> A = \(\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{125^3.7^3+5^9.\left(2.7\right)^3}\)
=> A = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{\left(5^3\right)^3.7^3+5^9.2^3.7^3}\)
=> A = \(\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3+5^9.2^3.7^3}\)
=> A = \(\frac{3-1}{3\left(3+1\right)}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3\left(1+2^3\right)}\)
=> A = \(\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}\)
A = \(\frac{1}{3.2}-\frac{-30}{9}\)
A = \(\frac{1}{6}-\frac{-10}{3}\)
A = \(\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}\)
=> A = \(\frac{7}{2}=3\frac{1}{2}\)
vậy A = \(3\frac{1}{2}\)
b) ta có:
3n+2-2n+2+3n-2n = (3n+2+3n) - (2n+2-2n)
= 3n(9+1) - 2n(4+1)
= 3n.10 - 2n.5
ta thấy: 3n.10 \(⋮\) 10
2n là một số chẵn mà 1 số chẵn nhân vs 5 luôn ra kết quả có tận cùng bằng 0 => 2n.5 \(⋮\) 10
=> 3n. 10 - 2n.5 \(⋮\) 10
=> 3n+2-2n+2+3n-2n \(⋮\) 10 vs mọi số nguyên dương n ( đpcm)
a, \(\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^{10}}{\left(20.5\right)^5}=\dfrac{20^5.5^{10}}{20^5.5^5}=5^5\)
b,\(\dfrac{\left(0,9\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3.3\right)^5}{\left(0,3\right)^6}=\dfrac{\left(0,3\right)^5.3^5}{\left(0,3\right)^6}=\dfrac{3^5}{\left(0,3\right)}\)
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)