Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{12}+\sqrt{27}-\sqrt{3}\)
\(=\sqrt{4.3}+\sqrt{9.3}-\sqrt{3}\)
\(=2\sqrt{3}+3\sqrt{3}-\sqrt{3}=4\sqrt{3}\)
\(\sqrt{12}+\sqrt{27}-\sqrt{3}=\sqrt{4.3}+\sqrt{9.3}-\sqrt{3}\)
\(=\sqrt{4}.\sqrt{3}+\sqrt{9}.\sqrt{3}-\sqrt{3}=2\sqrt{3}+3\sqrt{3}-\sqrt{3}\)
\(=\left(2+3-1\right)\sqrt{3}=4\sqrt{3}\)
1. Ta có \(-\sqrt{x}=-2\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\Rightarrow5x^2+7x=5.4^2+7.4=108\)
\(-\sqrt{x}=-2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)..\)
Thế vào biểu thức đã cho \(5x^2+7x\)ta được \(5.4^2+7.4=108\)
Vậy.....
2) Giả sử \(\sqrt{5}\)là số hữu tỉ \(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in Z;\left(a,b\right)=1\right)\)
\(\Rightarrow\frac{a^2}{b^2}=5\Leftrightarrow a^2=5b^2\Rightarrow a^2⋮5\Rightarrow a⋮5\Rightarrow a^2⋮25\)
Mặt khác \(a^2=5b^2\Rightarrow5b^2⋮25\Leftrightarrow b^2⋮5\Rightarrow b⋮5\)
Như vậy a và b cùng chia hết cho 25 . Mà theo giả thiết \(\left(a,b\right)=1\)nên vô lí
Suy ra \(\sqrt{5}\)không phải là số hữu tỉ nên là số vô tỉ
bài này mk viết nhầm
nếu đúng là : \(\sqrt{12}+\sqrt{27}-\sqrt{3}\)