Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,-2xy^2\left(x^3y-2x^2y^2+5xy^3\right)\\ =-2x^4y^3+4x^3y^4-10x^2y^5\\ b,\left(-2x\right)\left(x^3-3x^2-x+1\right)\\ =-2x^4+6x^3+2x^2-2x\\ c,\left(-10x^3+\dfrac{2}{5}y-\dfrac{1}{3}z\right)\left(-\dfrac{1}{2}zy\right)\\ =5x^3yz-\dfrac{1}{5}y^2z+\dfrac{1}{6}yz^2\\ d,3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\\ e,\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\\ f,\left(3x^2y-6xy+9x\right)\left(-\dfrac{4}{3}xy\right)\\ =-4x^3y^2+8x^2y^2-12x^2y\)
a) x^2+2xy+y^2-16
=(x+y)2-16
=(x+y-4)(x+y+4)
b) 3x^2+5x-3xy-5y
=(3x2-3xy)+(5x-5y)
=3x(x-y)+5(x-y)
=(x-y)(3x+5)
c) 4x^2-6x^3y-2x^2+8x
ko bik hoặc sai đề
d) x^2-4-2xy+y^2
=(x-y)2-4
=(x-y+2)(x-y-2)
e) x^3-4x^2-12x+27
=sai đề
g) 3x^2-18x+27
=3(x2-6x+9)
=3(x-3)2
h) x^2-y^2-z^2-2yz
=x2-(y2+z2+2yx)
=x2-(y+z)2
=(x-y-z)(x+y+z)
k) 4x^2(x-6)+9y^2(6-x)
=4x2(x-6)-9y2(x-6)
=(x-6)(4x2-9y2)
=(x-6)(2x-3y)(2x+3y)
l)6xy+5x-5y-3x^2-3y^2
=(5x-5y)+(-3x2+6xy-3y2)
=5(x-y)-3(x2-2xy+y2)
=5(x-y)-3(x-y)2
=(x-y)(5-3(x-y))
=(x-y)(5-3x+3y)
f: \(=\dfrac{2x^3-10x^2-11x^2+55x+12x-60}{x-5}=2x^2-11x+12\)
Bài 1:
a) Ta có: \(\left(1-2x\right)\left(1+2x\right)+\left(2x+3\right)^2=34\)
\(\Leftrightarrow1-4x^2+4x^2+12x+9-34=0\)
\(\Leftrightarrow12x-24=0\)
\(\Leftrightarrow12\left(x-2\right)=0\)
Vì 12≠0
nên x-2=0
hay x=2
Vậy: x=2
b) Ta có: \(\left(2x-3\right)^2+\left(3-2x\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left[\left(2x-3\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};2\right\}\)
Bài 2:
a) Ta có: \(\frac{2x-5y}{x-y}-\frac{3y}{y-x}\)
\(=\frac{2x-5y}{x-y}+\frac{3y}{x-y}\)
\(=\frac{2x-5y+3y}{x-y}=\frac{2x-2y}{x-y}=\frac{2\left(x-y\right)}{x-y}=2\)
b) Ta có: \(\frac{x^2+3xy}{x^2-9y^2}+\frac{5x-x^2}{x^2-3xy}\)
\(=\frac{x\left(x+3y\right)}{\left(x-3y\right)\left(x+3y\right)}+\frac{x\left(5-x\right)}{x\left(x-3y\right)}\)
\(=\frac{x}{x-3y}+\frac{5-x}{x-3y}\)
\(=\frac{x+5-x}{x-3y}=\frac{5}{x-3y}\)
\(A=4x^2+12xy+9y^2\)
\(B=25x^2-10xy+y^2\)
\(C=8x^3+12x^2y^2+6xy^4+y^6\)
\(D=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4y^2}{25}\)
\(E=x^3-27y^3\)
\(F=x^6-27\)