K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

(2⁹.16+2⁹.34):2¹⁰

=2⁹.16+2⁹.34:2¹⁰

=2⁹.(16+34):2¹⁰

=2⁹.50:2¹⁰

=50.(2¹⁰:2⁹)=2¹

=50.2=100

=50.2

 

7 tháng 10 2018

=( 21999+21999.25): (21990+9)
=21999.(1+25): 21999
=21999.(1+25): 21999
=21999. (1+25): 21999
=1.(1+32)
=1.33
=33

 

7 tháng 10 2018

đúng hộ mik

16 tháng 8 2015

\(\frac{3^2.4^2.2^{32}}{11.2^{13}.4^{11}-16^9}=\frac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}=\frac{9.2}{9}=2\)

\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{6^9.2^{10}+6^{10}.2^{10}}=\frac{2^{19}.3^9+3^9.5.2^{18}}{6^9.2^{10}.\left(1+6\right)}=\frac{2^{18}.3^9.\left(2+5\right)}{2^9.3^9.2^{10}.7}=\frac{2^{18}.7}{2^{19}.7}=\frac{1}{2}\)

4 tháng 9 2016

2 ; 1/2

4 tháng 7 2016

2412 : 2412 + 2 . 22 - 94 : 93 + 50 .16

= 1 + 2^3 - 9 + 16

= 1 +8 -9 +16

= 16

\(24^{12}:24^{12}+2.2^2-9^4:9^3+5^0.16\)

\(=1+2^3-9+1.16\)

\(=1+8-9+16\)

\(=16\)

Ủng hộ nha

4 tháng 7 2016

=1+8-9+16 = 16

4 tháng 7 2016

2412 : 2412 + 2 . 22 - 94 : 93 + 50 . 16=16

k nha

8 tháng 6 2018

b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1

8 tháng 6 2018

b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

c,Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(.....\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                                             \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                               \(=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)

15 tháng 7 2016

\(\frac{2^3.9^4+9^3.45}{9^2.10-9^2}=\frac{9^3\left(72+45\right)}{9^3}=72+45=117\)

3 tháng 10 2021

CÁC BẠN GIÚP MÌNH VỚI ! CẢM ƠN CÁC BẠN RẤT NHIỀU !!!