K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(1:\dfrac{1}{5}\right)\cdot\left(x^{2n}:x^{2n-1}\right)\cdot\left(y^{2n-1}:y^{2n-4}\right)\)

\(=5\cdot x^{2n-2n+1}\cdot y^{2n-1-2n+4}\)

\(=5xy^3\)

\(=\left(1:\dfrac{1}{5}\right)\cdot\left(x^{2n}:x^{2n-1}\right)\cdot\left(y^{2n-1}:y^{2n-4}\right)\)

\(=5x^{2n-2n+1}\cdot y^{2n-1-2n+4}\)

\(=5xy^3\)

18 tháng 3 2020

\(=\frac{\left(y^n-1\right)^2}{y\left(y^n-1\right)+2\left(y^n-1\right)}:\frac{\left(y^n-1\right)^3}{y+2}\)

\(=\frac{\left(y^n-1\right)^2}{\left(y+2\right)\left(y^n-1\right)}.\frac{y+2}{\left(y^n-1\right)^3}=\frac{1}{\left(y^n-1\right)^2}\)

19 tháng 3 2020

cảm ơn bạn. Mình còn vài câu hỏi nữa mong bạn giúp.

Bài làm :

\(a,\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)

\(=8x+16-5x^2-10x+\left(4x-8\right)\left(x+1\right)+2\left(x^2-2^2\right)+10\)

\(=8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2-8+10\)

\(=\left(8x-10x+4x-8x\right)+\left(-5x^2+4x^2+2x^2\right)+\left(16-8-8+10\right)\)

\(=-6x+x^2+10\)

20 tháng 9 2020

a)\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)+10\)\(=8x+16-5x^2-2+4x-8x-8+2x-4x-4+10\)\(=\left(8x+4x-8x+2x-4x\right)+\left(16-2-8-4+10\right)+5x^2\)

\(=2x+12+5x^2\)

b)\(4\left(x-1\right)\left(x+5\right)-\left(x+2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)

\(=4x-4x-20-\left[x^2+5x+2x+10\right]-3\left[x^2+2x-1x-2\right]\)

\(=4x-4x-20-x^2-5x-2x-10-3x^2-6x+3x+6\)

\(=\left(4x-4x-5x-2x-6x+3x\right)+\left(-20-10+6\right)+\left(-x^2-3x^2\right)\)

\(=-10x-24-4x^2\)

c)\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\)

Xét tích \(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\Leftrightarrow\left(x^n\right)^3-\left(y^n\right)^3=x^{3n}-y^{3n}\)

Thay vào bt đã cho ta có \(\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)

\(\Leftrightarrow\left(x^{3n}\right)^2-\left(y^{3n}\right)^2=x^{6n}-y^{6n}\)

19 tháng 6 2017

\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^{3n}+y^{3n}\right)\)

\(=x^{5n}+x^{2n}y^{3n}+x^{4n}y^n+x^ny^{4n}+x^{3n}y^{2n}+y^{5n}\)

a: \(=24x^{2m-1+3-2m}y^{6-3m}-\dfrac{24}{7}y^{3n-7+6-3n}\cdot x^{3-2m}+8x^{3-2m+2m}\cdot y^{6-3n+3m}-24x^{3-2m}y^{6-2n+2}\)

\(=24x^2y^{6-3m}-\dfrac{24}{7}x^{3-2m}\cdot y^{-1}+8x^3y^{-3n+3m+6}-24x^{3-2m}y^{-2n+8}\)

b: \(=2x^{2n+1-2n}-6x^{2n+2-2n}+3x^{2n-1+1-2n}-9x^{2n-1+2-2n}\)

\(=2x-6x^2+3-9x\)

\(=-6x^2-7x+3\)

17 tháng 4 2019

Ý c là thực hiện phép tính nha mọi người

NV
20 tháng 4 2019

a/ \(\left(2n^3-5n^2+1\right):\left(2n-1\right)=n^2-2n-1\)

b/ \(x\ne0;\pm2\)

\(\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}-\frac{2\left(x+2\right)}{x^2-4}+\frac{x-2}{x^2-4}\right):\left(\frac{6}{x+2}\right)\)

\(=\left(\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right).\left(\frac{x+2}{6}\right)\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)}{6}=-\frac{1}{x-2}=\frac{1}{2-x}\)

c/

\(\left(3x-1\right)^2+2\left(3x-1\right)\left(3x+4\right)+\left(3x+4\right)^2\)

\(=\left(3x-1+3x+4\right)^2\)

\(=\left(6x+3\right)^2\)