Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{75}-2\cdot\sqrt{12}+\sqrt{3}\)
\(=5\sqrt{3}-2\cdot2\sqrt{3}+\sqrt{3}\)
\(=6\sqrt{3}-4\sqrt{3}\)
\(=2\sqrt{3}\)
\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
a: \(=5\cdot5\sqrt{3}-\dfrac{1}{3}\cdot3\sqrt{3}=24\sqrt{3}\)
b: \(=\dfrac{12\left(3+\sqrt{5}\right)}{4}=9+3\sqrt{5}\)
c: \(=3-\sqrt{5}+\sqrt{5}=3\)
Ta có: \(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)
\(=-13\sqrt{3}\)
\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\\ =2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)
a) \(\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
b) \(\left(1+2\sqrt{3}-\sqrt{2}\right)\left(1+2\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+2\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(=1+4\sqrt{3}+12-2\)
\(=9+4\sqrt{3}\)
\(\frac{1}{2}\sqrt{72}+\frac{3}{4}\sqrt{48}+\sqrt{162}-\)\(\sqrt{75}\)
\(=\frac{1}{2}.6\sqrt{2}+\frac{3}{4}.4\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=3\sqrt{2}+3\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=12\sqrt{2}-2\sqrt{3}\)
Trước \(\sqrt{75}\)là dấu " - " hay dấu " -- " vậy? Nếu là dấu " -- " thì \(--\sqrt{75}\Rightarrow+\sqrt{75}\)nha
a) \(P=\dfrac{\sqrt{3}+\sqrt{6}}{1+\sqrt{2}}=\dfrac{\left(\sqrt{3}+\sqrt{6}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{6}+\sqrt{6}-\sqrt{12}}{1-2}=\sqrt{12}-\sqrt{3}\)
b) \(Q=\left(\sqrt{75}-\dfrac{3}{2}:\sqrt{3}-\sqrt{48}\right)\cdot\sqrt{\dfrac{16}{3}}\)
\(=\left(5\sqrt{3}-\dfrac{3}{2}\cdot\dfrac{1}{\sqrt{3}}-4\sqrt{3}\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\sqrt{3}\left(5-\dfrac{1}{2}-4\right)\cdot\dfrac{4}{\sqrt{3}}\)
\(=\left(1-\dfrac{1}{2}\right)\cdot4=2\)
a) \(\sqrt{36}.\sqrt{121}+\sqrt[3]{-64}-\sqrt[3]{125}\)
\(=6.11+\left(-4\right)-5=66-9=57\)
b) \(\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}-30\sqrt{\frac{3}{25}}\)
\(=\sqrt{25.3}+\left|\sqrt{3}-2\right|-30.\frac{\sqrt{3}}{\sqrt{25}}\)
\(=5\sqrt{3}+2-\sqrt{3}-30.\frac{\sqrt{3}}{5}\)
\(=5\sqrt{3}+2-\sqrt{3}-6\sqrt{3}=2-2\sqrt{3}\)
c) \(\sqrt{11-4\sqrt{7}}-\frac{12}{1+\sqrt{7}}=\sqrt{7-4\sqrt{7}+4}-\frac{12}{1+\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\frac{12}{1+\sqrt{7}}=\left|\sqrt{7}-2\right|-\frac{12}{1+\sqrt{7}}\)
\(=\left(\sqrt{7}-2\right)-\frac{12}{\sqrt{7}+1}=\frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}+1\right)}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}\)
\(=\frac{5-\sqrt{7}}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}=\frac{-7-\sqrt{7}}{\sqrt{7}+1}\)
\(=\frac{-\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}=-\sqrt{7}\)
\(\left(20.\sqrt{0.03}+12.\sqrt{3}-\frac{1}{5}.\sqrt{75}\right).\sqrt{6}\)
\(=20.\sqrt{0,03.6}+12.\sqrt{3.6}-\frac{1}{5}.\sqrt{75.6}\)
\(=20.\sqrt{\frac{9}{50}}+12.\sqrt{3^2.2}-\frac{1}{5}.\sqrt{15^2.2}\)
\(=6\sqrt{2}+36\sqrt{2}-3\sqrt{2}\)
\(=39\sqrt{2}\)
a) ( 75 - 3 2 - 12 )( 3 + 2 )
=(5 3 - 3 2 - 2 3 )( 3 + 2 )
=3( 3 - 2 )( 3 + 2 ) = 3