Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a. 2x(3x^2-5x+3) = 6x^3-10x^2+6x \)
\(b. -2x(x^2+5x-3) = -2x^3-10x^2+6x\)
c. \(-\dfrac{1}{2}x^2\left(2x^3-4x+3\right)
=-x^5+2x^3-\dfrac{3}{2}x^2\)
\(d.\left(2x-1\right)\left(x^2+5-4\right)=\left(2x-1\right)\left(x^2+1\right)=2x^3+2x-x^2-1\)
e. \(-\left(5x-4\right)\left(2x+3\right)=10x^2+15x-8x-12=-10x^2+7x-12\)
f.\(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
g.\(\left(3x-4\right)\left(x+4\right)+\left(5-x\right)\left(2x^2+3x-1\right)=3x^2+12x-4x-16+10x^2+15x-5-2x^3-3x^2+x=-2x^3+10x^2+24x-21\)
e. \(7x\left(x-4\right)-\left(7x+3\right)\left(2x^2-x+4\right)=7x^2-28x-14x^3+7x^2-28x-6x^2+3x+-12=-14x^3+8x^2-53x-12\)
a/ (x2-1)(x2+2x)
=x4+2x3-x2-2x
b/ (2x-1)(3x+2)(3-x)
=(6x2+x-2)(3-x)
=-6x3+17x2+x-6
c/ (x+3)(x2+3x-5)
=x3+3x2-5x+3x2+9x-15
=x3+6x2+4x-15
d/ (x+1)(x2-x+1)
=x3+1 dùng HĐT
e/ (2x3-3x-1)(5x+2)
=10x4-15x2-5x+4x3-6x-2
=10x4+4x3-15x2-11x-2
f/ (x2-2x+3)(x-4)
=x3-2x2+3x-4x2+8x-12
=x3-6x2+11x-12
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) Ta có: \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
b) Ta có: \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=\left(6x^2+x-2\right)\left(3-x\right)\)
\(=18x^2-6x^3+3x-x^2-6+2x\)
\(=-6x^3+17x^2+5x-6\)
c) Ta có: \(\left(x+3\right)\left(x^2+3x-5\right)\)
\(=x^3+3x^2-5x+3x^2+9x-15\)
\(=x^3+6x^2+4x-15\)
d) Ta có: \(\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3+1\)
e) Ta có: \(\left(2x^3-3x-1\right)\left(5x+2\right)\)
\(=10x^4+4x^3-15x^2-6x-5x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)
f) Ta có: \(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
g) Ta có: \(\left(4x-1\right)\left(3x+1\right)-5x\left(x-3\right)-\left(x-4\right)\left(x-3\right)\)
\(=12x^2+4x-3x-1-5x^2+15x-\left(x^2-7x+12\right)\)
\(=7x^2+16x-1-x^2+7x-12\)
\(=6x^2+23x-23\)
h) Ta có: \(\left(5x-2\right)\left(x+1\right)-3x\left(x^2-x-3\right)-2x\left(x-5\right)\left(x-4\right)\)
\(=5x^2+5x-2x-2-3x^3+3x^2+9x-2x\left(x^2-9x+20\right)\)
\(=-3x^3+8x^2+12x-2-2x^3+18x^2-40x\)
\(=-5x^3+26x^2-28x-2\)
a) \(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)
b) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)=6x^2-3x+4x-2\left(3-x\right)\)
\(=6x^2-3x+4x-6+2x\)
\(=6x^2+3x-6\)
c) \(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2+3x^2+9x-5x-15\)
\(=x^3+6x^2+4x-15\)
d) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+x^2-x^2-x+x+1\)
\(=x^3+1\)
e) \(\left(2x^3-3x-1\right)\left(5x+2\right)=10x^4-15x^2-5x+4x^3-6x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)
f) \(\left(x^2-2x+3\right)\left(x-4\right)=x^3-2x^2+3x-4x^2+8x-12\)
\(=x^3-6x^2+11x-12\)