Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)x + 0,25 = \frac{1}{2}\\x = \frac{1}{2} - 0,25\\x = \frac{1}{2} - \frac{1}{4}\\x = \frac{2}{4} - \frac{1}{4}\\x = \frac{1}{4}\end{array}\)
Vậy \(x = \frac{1}{4}\)
\(\begin{array}{l}b)x - \left( { - \frac{5}{7}} \right) = \frac{9}{{14}}\\x = \frac{9}{{14}} + \left( { - \frac{5}{7}} \right)\\x = \frac{9}{{14}} + \left( { - \frac{{10}}{{14}}} \right)\\x = \frac{{ - 1}}{{14}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{14}}\)
\(\begin{array}{l}a)\frac{x}{{ - 3}} = \frac{7}{{0,75}}\\ \Rightarrow x.0,75 = ( - 3).7\\ \Rightarrow x = \frac{{( - 3).7}}{{0,75}} = - 28\end{array}\)
Vậy x = 28
\(\begin{array}{l}b) - 0,52:x = \sqrt {1,96} :( - 1,5)\\ - 0,52:x = 1,4:( - 1,5)\\ x = \dfrac{(-0,52).(-1,5)}{1,4}\\x = \frac{39}{{70}}\end{array}\)
Vậy x = \(\frac{39}{{70}}\)
\(\begin{array}{l}c)x:\sqrt 5 = \sqrt 5 :x\\ \Leftrightarrow \frac{x}{{\sqrt 5 }} = \frac{{\sqrt 5 }}{x}\\ \Rightarrow x.x = \sqrt 5 .\sqrt 5 \\ \Leftrightarrow {x^2} = 5\\ \Leftrightarrow \left[ {_{x = - \sqrt 5 }^{x = \sqrt 5 }} \right.\end{array}\)
Vậy x \( \in \{ \sqrt 5 ; - \sqrt 5 \} \)
Chú ý:
Nếu \({x^2} = a(a > 0)\) thì x = \(\sqrt a \) hoặc x = -\(\sqrt a \)
a: \(\dfrac{x}{-3}=\dfrac{7}{0.75}=\dfrac{28}{3}\)
=>\(x=\dfrac{28\left(-3\right)}{3}=-28\)
b: \(-\dfrac{0.52}{x}=\dfrac{\sqrt{1.96}}{-1.5}=\dfrac{1.4}{-1.5}\)
=>\(x=0.52\cdot\dfrac{1.5}{1.4}=\dfrac{39}{70}\)
c: \(\dfrac{x}{\sqrt{5}}=\dfrac{\sqrt{5}}{x}\)
=>\(x^2=5\)
=>\(x=\pm\sqrt{5}\)
\(\begin{array}{l}a)2x + \frac{1}{2} = \frac{7}{9}\\2x = \frac{7}{9} - \frac{1}{2}\\2x = \frac{{14}}{{18}} - \frac{9}{{18}}\\2x = \frac{5}{{18}}\\x = \frac{5}{{18}}:2\\x = \frac{5}{{18}}.\frac{1}{2}\\x = \frac{5}{{36}}\end{array}\)
Vậy \(x = \frac{5}{{36}}\)
\(\begin{array}{l}b)\frac{3}{4} - 6x = \frac{7}{{13}}\\ 6x = \frac{3}{{4}} - \frac{7}{13}\\ 6x = \frac{{39}}{{52}} - \frac{{28}}{{52}}\\ 6x = \frac{{11}}{{52}}\\x = \frac{{11}}{{52}}:6\\x = \frac{{11}}{{52}}.\frac{{1}}{6}\\x = \frac{{11}}{{312}}\end{array}\)
Vậy \(x = \frac{{11}}{{312}}\)
\(\begin{array}{l}a){( - 2)^3}.{( - 2)^4} = {( - 2)^{3 + 4}} = {( - 2)^7}\\b){(0,25)^7}:{(0,25)^3} = {(0,25)^{7 - 3}} = {(0,25)^4}\end{array}\)
\(\begin{array}{l}a)x - \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right) = \dfrac{9}{{20}}\\x = \dfrac{9}{{20}} + \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right)\\x = \dfrac{9}{{20}} + \dfrac{{25}}{{20}} - \dfrac{{28}}{{20}}\\x = \dfrac{{6}}{{20}}\\x = \dfrac{{ 3}}{{10}}\end{array}\)
Vậy \(x = \dfrac{{ 3}}{{10}}\)
\(\begin{array}{*{20}{l}}{b)9 - x = \dfrac{8}{7} - \left( { - \dfrac{7}{8}} \right)}\\\begin{array}{l}9 - x = \dfrac{8}{7} + \dfrac{7}{8}\\9 - x = \dfrac{{64}}{{56}} + \dfrac{{49}}{{56}}\\9 - x = \dfrac{{113}}{{56}}\end{array}\\{x = 9 - \dfrac{{113}}{{56}}}\\{x = \dfrac{{504}}{{56}} - \dfrac{{113}}{{56}}}\\{x = \dfrac{{391}}{{56}}}\end{array}\)
Vậy \(x = \dfrac{{391}}{{56}}\)
a)
\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ = - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)
b) * Đa thức A(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -7
+ Hệ số tự do là: 9
* Đa thức B(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: 8
+ Hệ số tự do là: -7
a) Cách 1:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = 8 + \frac{7}{3} - \frac{3}{5} - 5 - \frac{2}{5} - \frac{{10}}{3} + 2\\ = (8 - 5 + 2) + (\frac{7}{3} - \frac{{10}}{3}) - (\frac{3}{5} + \frac{2}{5})\\ = 5 + \frac{{ - 3}}{3} - \frac{5}{5}\\ = 5 + ( - 1) - 1\\ = 3\end{array}\)
Cách 2:
\(\begin{array}{l}(8 + 2\frac{1}{3} - \frac{3}{5}) - (5 + 0,4) - (3\frac{1}{3} - 2)\\ = (8 + \frac{7}{3} - \frac{3}{5}) - (5 + \frac{4}{{10}}) - (\frac{{10}}{3} - 2)\\ = (\frac{{120}}{{15}} + \frac{{35}}{{15}} - \frac{9}{{15}}) - (\frac{{25}}{5} + \frac{2}{5}) - (\frac{{10}}{3} - \frac{6}{3})\\ = \frac{{146}}{{15}} - \frac{{27}}{5} - \frac{4}{3}\\ = \frac{{146}}{{15}} - \frac{{81}}{{15}} - \frac{{20}}{{15}}\\ = \frac{{45}}{{15}}\\ = 3\end{array}\)
b)
\(\begin{array}{l}(7 - \frac{1}{2} - \frac{3}{4}):(5 - \frac{1}{4} - \frac{5}{8})\\ = (\frac{{28}}{4} - \frac{2}{4} - \frac{3}{4}):(\frac{{40}}{8} - \frac{2}{8} - \frac{5}{8})\\ = \frac{{23}}{4}:\frac{{33}}{8}\\ = \frac{{23}}{4}.\frac{8}{{33}}\\ = \frac{{46}}{{33}}\end{array}\)
a. Đối với biểu thức không có dấu ngoặc.
+ Nếu phép tính chỉ có cộng, trừ hoặc chỉ có nhân, chia, ta thực hiện phép tính theo thứ tự từ trái sang phải.
+ Nếu phép tính có cả cộng , trừ, nhân, chia, nâng lên lũy thừa, ta thực hiện phép nâng lên lũy thừa trước, rồi đến nhân chia, cuối cùng đến cộng trừ.
Lũy thừa --> nhân và chia --> cộng và trừ.
b. Đối với biểu thức có dấu ngoặc.
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : ( ) --> [ ] --> { }
Áp dụng:
\(\begin{array}{l}a)10 + 36:2.3\\ = 10 + 18.3\\ = 10 + 54\\ = 64\\b)[5 + 2.(9 - {2^3})]:7\\ = [5 + 2.(9 - 8)]:7\\ = (5 + 2.1):7\\ = 7:7\\ = 1\end{array}\)
a)
\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)
b) P(1) = 2.12 = 2
P(0) = 2. 02 = 0
Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15
Q(0) = 8.02 – 2.0 + 5 = 5
\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) = - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) = - 0,05.{x^3}\end{array}\)