K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Ta có 

\(A=\sqrt{6+2\sqrt{8\sqrt{3}-10}}-\sqrt{7-\sqrt{3}}\)

=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{\left(6+2\sqrt{8\sqrt{3}-10}\right)\left(7-\sqrt{3}\right)}\)

=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{42-6\sqrt{3}+2\sqrt{\left(8\sqrt{3}-10\right)\left(7-\sqrt{3}\right)^2}}\)

=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{42-6\sqrt{3}+2\sqrt{\left(8\sqrt{3}-10\right)\left(52-14\sqrt{3}\right)}}\)

=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{\left(\sqrt{52-14\sqrt{3}}-\sqrt{8\sqrt{3}-10}\right)^2}\)

=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\left(\sqrt{52-14\sqrt{3}}+\sqrt{8\sqrt{3}-10}\right)\)

=>\(A^2=13-\sqrt{3}-2\sqrt{49-14\sqrt{3}+3}\)

=>\(A^2=13-\sqrt{3}-2\left(7-\sqrt{3}\right)=\sqrt{3}-1\)

=> \(A=\sqrt{\sqrt{3}-1}\)

Vậy \(A=\sqrt{\sqrt{3}-1}\)

27 tháng 5 2019

Xin lỗi có vài dòng dài nên nó bị chuyển xuống dưới , bạn hiểu hộ mình nhé

28 tháng 7 2016

b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{2}+2}-\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) (vì \(\sqrt{5}\ge\sqrt{2}\)

=0

c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}-1+\sqrt{3+1}\) (vì \(\sqrt{3}\ge1\))

\(=2\sqrt{3}\)

a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}-\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) (vì \(\sqrt{3}\ge\sqrt{2}\))

=0

28 tháng 7 2016

Hỏi đáp Toán

30 tháng 3 2016

1) ĐK:x\(\ge\frac{1}{2}\)

PT\(\Leftrightarrow\sqrt{2x-1}=x\)

\(\Leftrightarrow\begin{cases}x\ge0\\2x-1=x^2\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge0\\x=1\end{cases}\)

\(\Leftrightarrow x=1\)   (thỏa mãn)

30 tháng 3 2016

\(A=\frac{\left(3+\sqrt{5}\right)^2+\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(A=\frac{18+10}{4}\)

\(A=7\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

8) ĐKXĐ: $-2\leq x\leq 1$

PT $\Leftrightarrow (2x+4)-4\sqrt{2x+4}+4+[(1-x)-2\sqrt{1-x}+1]=0$

$\Leftrightarrow (\sqrt{2x+4}-2)^2+(\sqrt{1-x}-1)^2=0$

Dễ thấy: $(\sqrt{2x+4}-2)^2; (\sqrt{1-x}-1)^2\geq 0$ với mọi $x\in [-2;1]$ nên để tổng của chúng bằng $0$ thì:

$(\sqrt{2x+4}-2)^2=(\sqrt{1-x}-1)^2=0$

$\Leftrightarrow \sqrt{2x+4}=2; \sqrt{1-x}-1=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.....

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

7)

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow x^2+[(x+1)-2\sqrt{x+1}+1]=0$

$\Leftrightarrow x^2+(\sqrt{x+1}-1)^2=0$

Ta thấy:

$x^2\geq 0; (\sqrt{x+1}-1)^2\geq 0$ với mọi $x\geq -1$

Do đó để tổng của chúng bằng $0$ thì $x^2=(\sqrt{x+1}-1)^2=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.......

8 tháng 9 2019

Có cách giải nhưng t ko chắc đâu nhá;) đã bảo đưa dạng a, b, c rồi mà cứ đưa dạng này-_-

\(VT< \sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6....}}}}}=x>0\) (vô hạn dấu căn). Ta sẽ chứng minh x < 3

Ta thấy \(x^2=\sqrt{2}.x\Rightarrow x\left(x-\sqrt{2}\right)=0\Rightarrow x=\sqrt{2}< 3\Rightarrow\text{đpcm }\)

8 tháng 9 2019

\(x^2=2\sqrt{3\sqrt{4\sqrt{5....\sqrt{2000}}}}ma?\)

NV
2 tháng 10 2019

a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)

\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)

\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)

\(\Rightarrow x=-1\)

b/

\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)

\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)

\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)

\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)

\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra

NV
2 tháng 10 2019

c/ ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)

d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?

e/ ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)

\(\Leftrightarrow\sqrt{x+3}+1=x+4\)

\(\Leftrightarrow x+3-\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

20 tháng 8 2017

\(\dfrac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\dfrac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\dfrac{\left|\sqrt{3}+\sqrt{2}\right|+\left|\sqrt{5}-\sqrt{3}\right|}{\left|\sqrt{5}+\sqrt{2}\right|}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}=1\)

18 tháng 3 2019
https://i.imgur.com/B9pl8gm.jpg
21 tháng 9 2018

a, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)

= \(\sqrt{2+2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)

= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

= \(\sqrt{2}\) + 1 - 2 + \(\sqrt{2}\)

= 2\(\sqrt{2}\) - 1

b, \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

= \(\sqrt{5-4\sqrt{5}+4}-\sqrt{5}\)

= \(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

= \(\sqrt{5}-2-\sqrt{5}\)

= - 2

21 tháng 9 2018

c, \(\sqrt{28+8\sqrt{7}}-\sqrt{7}\)

= \(\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)

= \(\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

= 4 + \(\sqrt{7}\) - \(\sqrt{7}\)

= 4