Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)^3+c^3+3c.\left(a+b\right).\left(a+b+c\right)\right]-a^3-b^3-c^3\)
\(=\left[a^3+b^3+3ab.\left(a+b\right)+c^3+3c.\left(a+b\right)\right]-a^3-b^3-c^3\)
\(=3ab.\left(a+b\right)+3c.\left(a+b\right)\left(a+b+c\right)=3.\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng :
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\a-b+c=y\\-a+b+c=z\end{matrix}\right.\) \(\Rightarrow x+y=z=a+b+c\)
Khi đó biểu thức trở thành :
\(\left(x+y+z\right)^3-x^3-y^3-z^3=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(=3.2a.2b.2c=24abc\)
a)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=2ab+2ab=4ab\)
b)\(\left(a+b\right)^3-\left(a-b\right)^3-2b^3=\left(a^3+b^3+3ab\left(a+b\right)\right)-\left(a^3-b^3-3ab\left(a-b\right)\right)-2b^3\)
\(2b^3-2b^3+3ab^2+3ab^2=6ab^2\)
Bài 1:
a) \(A=\left(-\frac{1}{3}xz^2y\right).\left(-9zy^3x^2\right)\)
\(=3x^3y^4z^3\)
b) Hệ số: 3
Biến: x3y4z3
Bậc: 10
Bài 2:
a) \(B=\left(-\frac{1}{2}zxy^2\right).\left(-8x^2y^3z\right)\)
\(=4x^3y^5z^2\)
b) Hệ số: 4
Biến: x3y5z2
Bậc: 10
#Học tốt!
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)c\left(a+b+c\right)+c^3\)
\(=a^3+3ab\left(a+b\right)+b^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(\text{đ}pcm\right)\)
Bài 1:
a: =>9x^2-6x+1=9x^2-2x
=>-4x=-1
=>x=1/4
b: \(\Leftrightarrow x^2+6x+9-x^2-2x-3=14\)
=>4x+6=14
=>4x=8
=>x=2
Bài 2:
a: \(=2x^2-6x+x-3-x^2+5x+3x=x^2+3x-3\)
b: =x^3-6x^2+12x-8-x^3+6x^2
=12x-8
a/ (x+y)3-(x-y)3-2y3
= (x3+3x2y+3xy2+y3)-(x3-3x2y+3xy2-y3)-2y3
= x3+3x2y+3xy2+y3-x3+3x2y-3xy2+y3-2y3
= 6xy2
b/ (x+2)(x2-2x+4)-(16-x3)
= x3-2x2+4x+2x2-4x+8-16+x3
= 2x3-8
c/ (2a+b)(4a2-2ab+b2)-(2a-b)(4a2+2ab+b2)
= (8a3+b3)-(8a3-b3)
= 8a3+b3-8a3+b3
= 2b3
\(=\left[\left(a+b\right)\left(a-b\right)\right]^3=\left(a^2-b^2\right)^3\)