Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)
\(A=\left(x^2+x^2+x^2\right)+\left(y^2-y^2+y^2\right)+\left(z^2+z^2-z^2\right)\)
\(A=3x^2+y^2+z^2\)
A = \(x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)
= \(\left(1+1+1\right)x^2+\left(1-1+1\right)y^2+\left(1+1-1\right)z^2\)
=\(3x^2+y^2+z^2\)
\(\left(x^2-x^2\right)-\left(y^2-y^2\right)+\left(z^2-z^2\right)+2015x=2015x.\)
M = ( x\(^3\) + x\(^3\) + x\(^3\) ) + ( y\(^3\) - y\(^3\) + y\(^3\) ) + ( z\(^3\) + z3 - z\(^3\) )
= 3x\(^3\) + y\(^3\) + z\(^3\)
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.
- Ta có: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Leftrightarrow x^2+y^2+2xy=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
- CMT2: \(y^2+z^2-x^2=-2yz\)
\(z^2+x^2-y^2=-2zx\)
- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P
- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)
\(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)
- Đặt \(a=x^3+y^3+z^3\)
- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)
\(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)
- Mặt khác: \(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a
- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)
- Thay \(a=3xyz\)vào đa thức P
- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)
Vậy \(P=-\frac{3}{2}\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
\(x\left(y-z\right)-z\left(y-x\right)\)
\(=xy-xz-zy+zx\)
\(=xy-zy=y\left(x-z\right)\)
\(\left(x+y\right)\left(x-y\right)\)
\(=x^2-xy+xy-y^2=x^2-y^2\)
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y+2x=2\left(x+y\right)\)
a, x(y-z)-z(y-x)=xy-xz-zy+xz
=xy-zy=y(x-z)
b,(x+y)(x-y)=x2-y2
c,(x+y)2-(x-y)2=(x+y+x-y)(x+y-x+y)
=2x.2y
=4xy
Ở trường mình vẫn chưa học đến đa thức.