Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(A=\)\(1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=\)\(2^{2016}-1\)
~~~Hok tốt~~~
2,\(B=3^{11}+3^{12}+3^{13}+...+3^{101}\)
\(\Rightarrow3B=3^{12}+3^{13}+3^{14}+...+3^{102}\)
\(\Rightarrow3B-B=\left(3^{12}+3^{13}+3^{14}+...+3^{102}\right)-\left(3^{11}+3^{12}+3^{13}+...+3^{101}\right)\)
\(\Rightarrow2B=3^{102}-3^{11}\)
\(\Rightarrow B=\frac{3^{102}-3^{11}}{2}\)
~~~Hok tốt~~~
a ) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
\(\Rightarrow2A-A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
b ) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3+3^2...+3^{2011}\right)-\left(1+3+...+3^{2010}\right)\)
\(\Rightarrow2B=3^{2011}-1\)
\(\Rightarrow B=\frac{3^{2011}-1}{2}\)
Chúc bạn học tốt !!!
J=6 + 16 + 30 + 48 +...+ 19600 + 19998
Chia cả 2 vế cho 2 ta được
B/2 = 3 + 8 + 15 + 24 + ......... + 98000+ 9999
B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101
B/2= 100/6[(100-1)x(2x100+1)] = 328350
-> B =328350x2=656700
K=2 + 5 + 9 + 14 + ....+ 4949 + 5049
Nhân cả 2 vế với 2 ta được
2xD=1x4+ 2x5+ 3x6+ 4x7+……..+98x101+99x102
2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)
2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2
2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)
2xD = 333300 + 9900 = 343200
-> D= 343200 :2 =171600
Bài 4 :
\(D=11+11^2+11^3+...+11^{1000}\)
\(11D=11^2+11^3+11^4+...+11^{1001}\)
\(11D-D=\left(11^2+11^3+11^4+...+11^{1001}\right)-\left(11+11^2+11^3+...+11^{1000}\right)\)
\(10D=11^{1001}-11\)
\(D=\frac{11^{1001}-11}{10}\)
Vậy \(D=\frac{11^{1001}-11}{10}\)
Chúc bạn học tốt ~
Bài 1 :
\(A=1+2+2^2+....+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
Chúc bạn học tốt ~
a, Ta thấy A chia hết cho 7 (nguyên tố)
Có : 7^2;7^3;....;7^10 đều chia hết cho 49 mà 7 ko chia hết cho 49
=> A ko chia hết cho 49
=> A chia hết cho 7 (nguyên tố ) mà A ko chia hết cho 49=7^2
=> A ko phải là số cp
Tương tự câu a : b, b chia hết cho 11 (nguyên tố) nhưng ko chia hết cho 11^2 => b ko chính phương
c, Vì 10^10 có tận cùng là 0
=> c có tận cùng là 8
=> c ko chính phương
k mk nha
a, 13 + 23 = 1+8 = 9 = 32 = (-3)2
b, 13 + 23 + 33 = 1+8+27 = 36 = 62 = (-6)2
c, 13 + 23 + 33 + 43 = 1+8+27+64 = 100 = 102 = (-10)2
d, 13 + 23 + 33 + 43 = 1+8+27+64+125 = 225 = 152 = (-15)2
A = 1 + 3 + 32 + 33 + ... + 3100
2A = 3 + 32 + 33 + 34 + ... + 3101
A = 2A - A = 3101 - 1
Vậy A = 3101 - 1
a)Ta có \(2A=2^2+2^3+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
b)
Ta có \(3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
Vậy \(A=\frac{3^{101}-3}{2}\)