Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thu gọn các đơn thức sau đây. Chỉ ra hệ số và bậc của chúng
a) 12xy2x
b) -y(2z)y
c) x3yx
d) 5x2y3z4y
\(a.12x^2y^2\)
\(b.-2y^2z\)
\(c.x^4y\)
\(d.5x^2y^4z^4\)
- \(5xyz\)
Hệ số: 5
Phần biến: \(xyz\)
Bậc: 1+1+1=3
- \(-xyz\cdot\dfrac{2}{3}y=-\dfrac{2}{3}xy^2z\)
Hệ số: \(-\dfrac{2}{3}\)
Phần biến: \(xy^2z\)
Bậc: 1+2+1=4
- \(-2x^2\left(-\dfrac{1}{6}\right)x=\dfrac{1}{3}x^3\)
Hệ số: \(\dfrac{1}{3}\)
Biến: \(x^3\)
Bậc: 3
a) (1/3 x²y)(2xy³)
= (1/3 . 2).(x².x).(y.y³)
= 2/3 x³y⁴
Hệ số: 2/3
Phần biến: x³y⁴
Bậc: 7
b) 1/4 x³y .(-2x³y⁴)
= [1/4 . (-2)].(x³.x³).(y.y⁴)
= -1/2 x⁶y⁵
Hệ số: -1/2
Phần biến: x⁶y⁵
Bậc: 11
c) -xy.(2x³y⁴).(-5/4x²y³)
= [-2.(-5/4)].(x.x³.x²).(y.y⁴.y³)
= 5/2 x⁶y⁸
Hệ số: 5/2
Phần biến: x⁶y⁸
Bậc: 14
a) Các đơn thức thu gọn là: \(B = 12,75xyz;D = \left( {2 - \sqrt 5 } \right)x.\)
Thu gọn các đơn thức còn lại:
\(\begin{array}{l}A = 4x\left( { - 2} \right){x^2}y = \left[ {4.\left( { - 2} \right).\left( {x.{x^2}} \right).y} \right] = - 8{x^3}y;\\C = \left( {1 + 2.4,5} \right){x^2}y.\dfrac{1}{5}{y^3} = 10{x^2}y.\dfrac{1}{5}{y^3} = \left( {10.\dfrac{1}{5}} \right){x^2}\left( {y.{y^3}} \right) = 2{x^2}{y^4}.\end{array}\)
b) Đơn thức A: Hệ số: -8; phần biến: \({x^3}y\); bậc là 4.
Đơn thức B: Hệ số: 12,75; phần biến: \(xyz\); bậc là 3.
Đơn thức C: Hệ số: 2; phần biến: \({x^2}{y^4}\); bậc là 6.
Đơn thức D: Hệ số: \(2 - \sqrt 5 \); phần biến: \(x\); bậc là 1.
a)
\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)
b) Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)
Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.
Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.
Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)
\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)
Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)
b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)
a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức
b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức
\(\dfrac{1}{4}.\left(x^2y^3\right)^2.\left(-2xy\right)\\ =\dfrac{1}{4}.x^4y^6.\left(-2xy\right)\\ =\left[\dfrac{1}{4}.\left(-2\right)\right].\left(x^4.x\right)\left(y^6.y\right)\\ =-\dfrac{1}{2}x^5y^7\)
Hệ số : `-1/2`
Bậc : `12`
a) Ta có: \(12x{y^2}x = 12.\left( {x.x} \right).{y^2} = 12{x^2}{y^2}\)
Đơn thức trên có hệ số là \(12\), bậc bằng \(2 + 2 = 4\).
b) Ta có: \( - y\left( {2z} \right)y = - 2.\left( {y.y} \right).z = - 2{y^2}z\)
Đơn thức trên có hệ số là \( - 2\), bậc bằng \(2 + 1 = 3\).
c) Ta có: \({x^3}yx = \left( {{x^3}.x} \right).y = {x^4}y\)
Đơn thức trên có hệ số là \(1\), bậc bằng \(4 + 1 = 5\).
d) Ta có: \(5{x^2}{y^3}{z^4}y = 5{x^2}.\left( {{y^3}.y} \right).{z^4} = 5{x^2}{y^4}{z^4}\)
Đơn thức trên có hệ số là \(5\), bậc bằng \(2 + 4 + 4 = 10\).