Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{3}{5}xyz^2\cdot\frac{1}{3}xy\cdot\left(-\frac{1}{4}\right)x^5yz\)
\(=\left(-\frac{3}{5}\cdot\frac{1}{3}\cdot\frac{-1}{4}\right)\left(x\cdot x\cdot x^5\right)\left(y\cdot y\cdot y\right)\left(z^2\cdot z\right)\)
\(=\frac{1}{20}x^7y^3z^3\)
Câu 1:
\(3\left(x-1\right)=2\left(y-2\right)\Leftrightarrow3x-3=2y-4\Leftrightarrow3x=2y-1\)
\(4\left(y-2\right)=3\left(z-3\right)\Leftrightarrow4y-8=3z-9\Leftrightarrow4y=3z-1\)
Lại có:
\(3x=2y-1\Leftrightarrow6x=4y-2=3z-1-2=3z-3\)
\(\Rightarrow6x=4y-2=3z-3\)
\(\Rightarrow6x=3z-3\Leftrightarrow2x=z-1\)
\(\Rightarrow2x+3y-z=z-1+3y-z=3y-1=50\Leftrightarrow3y=51\Leftrightarrow y=17\)\(\Rightarrow\left\{{}\begin{matrix}x=11\\z=23\end{matrix}\right.\)
Câu 3:
\(\frac{a}{b}=\frac{8}{5}\Leftrightarrow\frac{a}{8}=\frac{b}{5}\Leftrightarrow\frac{1}{2}.\frac{a}{8}=\frac{1}{2}.\frac{b}{5}\Leftrightarrow\frac{a}{16}=\frac{b}{10}\) (1)
\(\frac{b}{c}=\frac{2}{7}\Leftrightarrow\frac{b}{2}=\frac{c}{7}\Leftrightarrow\frac{1}{5}.\frac{b}{2}=\frac{1}{5}.\frac{c}{7}\Leftrightarrow\frac{b}{10}=\frac{c}{35}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{16}=\frac{b}{10}=\frac{c}{35}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=16k\\b=10k\\c=35k\end{matrix}\right.\)
\(\Rightarrow a+b+c=16k+10k+35k=61k=61\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=16k=16\\b=10k=10\\c=35k=35\end{matrix}\right.\)
\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)
\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)
\(=3xyz-\frac{1}{6}x^2y^2z^2\)
\(xyz\left(3-\frac{1}{6}xyz\right)\)
b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)
\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)
\(=\frac{3}{56}x^3y^3z^{10}\)
a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)
b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)