Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=-1+5x^6-6x^2-5+9x^6+4x^2-3x^2\)
\(=-6+14x^6-5x^2\)
→ Sắp xếp: \(A=14x^6-5x^2-6\)
\(B=-6-5x^2+3x^4-5x^2+3x+x^4+14x^6-5x\)
\(=-6-10x^2+4x^4-2x+14x^6\)
→ Sắp xếp: \(B=14x^6+4x^4-10x^2-2x-6\)
b) \(A\left(x\right)+B\left(x\right)=14x^6-5x^2-6+14x^6+4x^4-10x^2-2x-6\)
\(=28x^6-15x^2+4x^4-2x-12\)
\(A\left(x\right)-B\left(x\right)=\left(14x^6-5x^2-6\right)-\left(14x^6+4x^4-10x^2-2x-6\right)\)
\(=14x^6-5x^2-6-14x^6-4x^4+10x^2+2x+6\)
\(=5x^2-4x^4+2x\)
a)\(A\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\\ B\left(x\right)=x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b)\(A\left(x\right)+B\left(x\right)\)
\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)+\left(x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\\ =5x^2-4x^4-2x^3+4x^2+3x+6+x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\\ =\left(5x^5+x^5\right)+\left(-4x^4+2x^4\right)+\left(-2x^3-2x^3\right)+\left(4x^2+3x^2\right)+\left(3x-x\right)+\left(6+\frac{1}{4}\right)\\ =6x^5-2x^4-4x^3+7x^2+2x+\frac{25}{4}\)
\(A=x^7-2x^4+3x^3-3x^4+2x^7-x+7-2x^3\)
\(A=3x^7-5x^4+x^3-x+7\)
\(B=3x^2-4x^4-3x^2-5x^5-0,5x-2x^2-3\)
\(B=-5x^5-4x^4-2x^2-0,5x-3\)
\(A+B=3x^7-5x^4+x^3-x+7-5x^5-4x^4-2x^2-0,5x-3\)
\(A+B=3x^7-9x^4+x^3-1,5x+4\)
\(A-B=3x^7-5x^4+x^3-x+7+5x^5+4x^4+2x^2+0,5x+3\)
\(A-B=3x^7-x^4+x^3-0,5x+10+5x^5\)
\(P\left(x\right)=-4x^4+3x^3+4x^2+3x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=-x^5-2x^4+x^3+7x^2+2x+\frac{25}{4}\)
\(P\left(x\right)-Q\left(x\right)=x^5-6x^4+5x^3+x^2+4x+\frac{23}{4}\)
P(x) = -4x^4 + (5x^3 - 2x^3) + 4x^2 + 3x + 6
= -4x^4 + 3x^3 + 4x^2 + 3x + 6
Q(x) = -x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4
P(x) + Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) + (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)
= -4x^4 + 3x^3 + 4x^2 + 3x + 6 - x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4
= -x^5 - (4x^4 - 2x^4) + (3x^3 - 2x^3) + (4x^2 + 3x^2) + (3x - x) + (6 + 1/4)
= -x^5 - 2x^4 + x^3 + 7x^2 + 2x + 25/4
P(x) - Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) - (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)
= -4x^4 + 3x^3 + 4x^2 + 3x + 6 + x^5 - 2x^4 + 2x^3 - 3x^2 + x - 1/4
= x^5 - (4x^4 + 2x^4) + (3x^3 + 2x^3) + (4x^2 - 3x^2) + (3x + x) + (6 - 1/4)
= x^5 - 6x^4 + 5x^3 + x^2 + 4x + 23/4
Chúc bạn học tốt
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
đơn thức nào đồng dạng thì đem cộng với nhau
a) \(x^5-3x^2+x^4-\dfrac{1}{2}x-x^5+5x^4+x^2-1\)
\(=6x^4-2x^2-\dfrac{1}{2}x-1\)
b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)
\(=2x^9+3x^6-6x^3+x^2+7\)