Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đơn thức nào đồng dạng thì đem cộng với nhau
a) \(x^5-3x^2+x^4-\dfrac{1}{2}x-x^5+5x^4+x^2-1\)
\(=6x^4-2x^2-\dfrac{1}{2}x-1\)
b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)
\(=2x^9+3x^6-6x^3+x^2+7\)
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
a) x7-x4+2x3-3x4-x2+x7-x+5-x3
= 5-x-x2+(2x3-x3)-(x4+3x4)+(x7+x7)
= 5-x-x2+x3-4x4+2x7
Hệ số cao nhất là 2. Hệ số tự do là 5
b) 2x2-3x4-3x2-4x5-\(\dfrac{1}{2}\)x-x2+1
= 1-\(\dfrac{1}{2}\)x+(2x2-3x2-x2)-3x4-4x5
= 1-\(\dfrac{1}{2}\)x-2x2-3x4-4x5
Hệ số cao nhất là -4. Hệ số tự do là 1
a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)
\(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)
b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)
g(x)=A(x)-B(x) = \(-x^4+8x^3+4x^2+6x\)\(-10\)
c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)
= -10
g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)
=\(-54\)
Ta có: A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2
A(x) = (-4x5 + 4x5) - x3 + (4x2 - 6x2) + 5x + (9 - 2)
A(x) = -x3 - 2x2 + 5x + 7
B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x
B(x) = -3x4 - (2x3 - 5x3 + 2x3) + 10x2 - (8x - 8x) - 7
B(x) = -3x4 + x3 + 10x2 - 7
A(x) + B(x) = (-x3 - 2x2 + 5x + 7) + (-3x4 + x3 + 10x2 - 7)
= -x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7
= (-x3 + x3) - (2x2 - 10x2) + 5x + (7 - 7)
= 8x2 + 5x
A(x) - B(x) = (-x^3 - 2x^2 + 5x + 7) - (-3x^4 + x^3 + 10x^2 - 7)
= -x^3 - 2x^2 + 5x + 7 + 3x^4 - x^3 - 10x^2 + 7
= (-x^3 - x^3) - (2x^2 + 10x^2) + 5x + (7 + 7)
= -2x^3 - 12x^2 + 5x + 14
a) Thu gọn và sắp xếp đa thức trên theo lũy thừa tăng dần của biến
* \(P\left(x\right)=3x^5-5x^5+x^4-2x-x^5+3x^4-x^2+x+1\)
\(P\left(x\right)=1+\left(-2x+x\right)+\left(-x^2\right)+\left(x^4+3x^4\right)+\left(3x^5-5x^5-x^5\right)\)
\(P\left(x\right)=1-x-x^2+4x^4-3x^5\)
* \(Q_x=-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)
\(Q\left(x\right)=-5+\left(-2x+2x\right)+3x^2+\left(-3x^3\right)+\left(-3x^4\right)+\left(3x^5-x^5\right)\)
\(Q\left(x\right)=-5+3x^2-3x^3-3x^4+2x^5\)
b)
* \(P\left(x\right)+Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)+\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)+\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)\(P\left(x\right)+Q\left(x\right)=\left(1+-5\right)+\left(-x^2+3x^2\right)+\left(4x^4-3x^4\right)+\left(-3x^5+2x^5\right)-x-3x^3\)
\(P\left(x\right)+Q\left(x\right)=-4-x+x^2-3x^3+x^4-x^5\)
* \(P\left(x\right)-Q\left(x\right)=\left(3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\right)-\left(-5+3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\right)\)
\(P\left(x\right)-Q\left(x\right)=\left(1-x-x^2+4x^4-3x^5\right)-\left(-5+3x^2-3x^3-3x^4+2x^5\right)\)
\(P\left(x\right)-Q\left(x\right)=1-x-x^2+4x^4-3x^5+5-3x^2+3x^3+3x^4-2x^5\)
\(P\left(x\right)-Q\left(x\right)=\left(1+5\right)+\left(-x^2-3x^2\right)+\left(4x^4+3x^4\right)+\left(-3x^5-2x^5\right)-x+3x^3\)
\(P\left(x\right)-Q\left(x\right)=6-4x+7x^4-5x^5-x+3x^3\)
a) x5-3x2+x4-\(\dfrac{1}{2}\)x-x5+5x4+x2-1
= (x5-x5)+(x4+5x4)+(x2-3x2)-\(\dfrac{1}{2}\)x-1
= 6x4-2x2-\(\dfrac{1}{2}\)x-1
b) x-x9+x2-5x3+x6-x+3x9+2x6-x3+7
= (3x9-x9)+(2x6+x6)-(5x3+x3)+x2+(x-x)+7
= 2x9+3x6-6x3+x2+7