Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(4ab.\frac{1}{3}ac-2aca-9a^2.\frac{1}{2}b+10a^2.\frac{1}{5}c+a^2b-a^2bc\)
\(=\left(4.\frac{1}{3}\right)\left(a.a\right).bc-2a^2c-\left(9.\frac{1}{2}\right)a^2b+\left(10.\frac{1}{5}\right)a^2c+a^2b-a^2bc\)
\(=\frac{4}{3}a^2bc-2a^2c-\frac{9}{2}a^2b+2a^2c+a^2b-a^2bc\)
\(=\left(\frac{4}{3}a^2bc-a^2bc\right)+\left(-2a^2c+2a^2c\right)+\left(-\frac{9}{2}a^2b+a^2b\right)\)
\(=\frac{1}{3}a^2bc+\left(-\frac{7}{2}a^2b\right)\)
b. \(2ab-2bc.c+ab+\frac{1}{2}c^2b-4cb^2+2bcb\)
\(=2ab-2bc^2+ab+\frac{1}{2}c^2b-4cb^2+2b^2c\)
\(=\left(2ab+ab\right)+\left(-2bc^2+\frac{1}{2}c^2b\right)+\left(-4cb^2+2b^2c\right)\)
\(=3ab+-\frac{3}{2}bc^2+-2b^2c\)
\(=b\left(3a-\frac{3}{2}c^2-2bc\right)\)
a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)
\(=7xy+3x-2y-y^2\)
b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)
\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)
c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)
\(=7a^2b-11b^2+9c^2\)
Lời giải:
Ta có:
$2a^2+2b^2+2c^2=2ab+2bc+2ac$
$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$
$\Rightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Ta thấy: $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ với mọi $a,b,c$
Do đó để tổng của chúng bằng $0$ thì:
$(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Khi đó: \(N=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=(1+1)(1+1)(1+1)=8\)