K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

Xúc xích bonitanwg 88%cặc

19 tháng 2 2017

a. \(4ab.\frac{1}{3}ac-2aca-9a^2.\frac{1}{2}b+10a^2.\frac{1}{5}c+a^2b-a^2bc\)

\(=\left(4.\frac{1}{3}\right)\left(a.a\right).bc-2a^2c-\left(9.\frac{1}{2}\right)a^2b+\left(10.\frac{1}{5}\right)a^2c+a^2b-a^2bc\)

\(=\frac{4}{3}a^2bc-2a^2c-\frac{9}{2}a^2b+2a^2c+a^2b-a^2bc\)

\(=\left(\frac{4}{3}a^2bc-a^2bc\right)+\left(-2a^2c+2a^2c\right)+\left(-\frac{9}{2}a^2b+a^2b\right)\)

\(=\frac{1}{3}a^2bc+\left(-\frac{7}{2}a^2b\right)\)

b. \(2ab-2bc.c+ab+\frac{1}{2}c^2b-4cb^2+2bcb\)

\(=2ab-2bc^2+ab+\frac{1}{2}c^2b-4cb^2+2b^2c\)

\(=\left(2ab+ab\right)+\left(-2bc^2+\frac{1}{2}c^2b\right)+\left(-4cb^2+2b^2c\right)\)

\(=3ab+-\frac{3}{2}bc^2+-2b^2c\)

\(=b\left(3a-\frac{3}{2}c^2-2bc\right)\)

19 tháng 2 2017

cảm ơn bạn nha

a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)

b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)

c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)

d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)

e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)

a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)

\(=7xy+3x-2y-y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

23 tháng 5 2022

\(A=5xy-y^2-2xy+4xy+3x-2y\)

\(A=-y^2+7xy+3x-2y\)

\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)

\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(C=7a^2b-11b^2+9c^2\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Ta có:

$2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Rightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$

$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Ta thấy: $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì:

$(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Khi đó: \(N=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=(1+1)(1+1)(1+1)=8\)