Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
a) \(A=\left(x-1\right)^2+\left|2y+2\right|-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|2y+2\right|\ge0\forall y\)
Do đó: \(\left(x-1\right)^2+\left|2y+2\right|\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left|2y+2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\left(x-1\right)^2+\left|2y+2\right|-3\) là -3 khi x=1 và y=-1
b) \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\)
Ta có: \(\left(x+5\right)^2\ge0\forall x\)
\(\left(2y-6\right)^2\ge0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-6\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\2y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x+5\right)^2+\left(2y-6\right)^2+1\) là 1 khi x=-5 và y=3
a, \(x+y+z-x-y+z=2z\)
Thay z=-10 Thì \(2z=-20\)
b, \(a-b-c+a+b=2a-c=2\cdot\left(-12\right)-\left(-27\right)=3\)
\(A=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(Min_A=1\)
\(B=\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\)
\(Min_B=2\)
\(C=\left|2x+3\right|+\left(y-1\right)^2-5\ge-5\)
\(Min_C=-5\)
\(E=\left(2x+3\right)^2-4\ge-4\)
\(Min_E=-4\)
1) a) xy-5x-55y=0
\(\Leftrightarrow\) x(y-5)-55y+225=0+225=225
\(\Leftrightarrow\)x(y-5)-(55y-275)=225
\(\Leftrightarrow\) x(y-5)-55(y-5)=225
\(\Leftrightarrow\)(x-55).(y-5)=225
Số 225 có quá nhiều ước, là tích của quá nhiều cặp số nguyên nên bạn chịu khó liệt kê ra nha ( hoặc là xem lại đề bài vì chẳng có giáo viên nào hành h/s thế đâu.)
a) A = | x - 3 | + 1
| x - 3 |\(\ge\)0
Nên | x - 3 |+1\(\ge\)1
Dấu = xảy ra khi x-3=0 hay x=3
Vậy GTNN của A=1 khi x=3
b ) B = | 6 - 2x | - 5
| 6 - 2x |\(\ge\)0
Nên |6-2x|-5\(\ge\)-5
Dấu = xảy ra khi 6-2x=0 hay x=3
Vậy GTNN của B=-5 khi x=3
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
Vì ( x + 1 ) 2\(\ge\)0
Nên -( x + 1 ) 2\(\le\)0
Vì |2y - y |\(\ge\)0
Nên - |2y - y |\(\le\)0
C = - ( x + 1 ) 2 - |2y - y | + 11 \(\le\)11
Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0
Vậy GTLN của C=11 khi x=-1 và y=0
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
Vì ( x + 5 )2 \(\ge\)0
(2y - 6 )2 \(\ge\)0
D = ( x + 5 )2 + (2y - 6 )2 + 1\(\ge\)1
Vậy dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3
Vậy GTNN của D=1 khi x=-5;y=3
A = a. (b - c - d) - a . (b + c - d)
= ab - ac - ad - ab - ac + ad
= 0
B = x . (z -y) -z . (x+ y) + y . (x - y)
= xz -xy -zx -zy - yx -yy
= -xy -xy - zy - yy
= -y (x - x - z - y)
= -y (-z - y )