Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sai đề rồi làm j có 1! hay 2! hay ...
Sửa đề đi rồi tui làm cho
Ta có:
S = 1.1!+2.2!+3.3!+.....+100.100!
S = (1+1-1).1!+(2+1-1).2!+...+(100+1-1).100!
S = 2!-1+3!-2!+4!-3!+...+101!-100!
S = 101!+(100!-100!)+(99!-99!)+...+(2!-2!)-1
S = 101!-1
9C=32-34+36-38+.................+398-3100+3102
9C+C=1+3102
10C=1+3102
C=\(\frac{1+3^{102}}{10}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^n}\)
=>\(3S=3.\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=3+1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\)
=>\(3S-S=\left(3+1+\frac{1}{3}+.....+\frac{1}{3^{n-1}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)
=>\(2S=3+1+\frac{1}{3}+....+\frac{1}{3^{n-1}}-1-\frac{1}{3}-\frac{1}{3^2}-....-\frac{1}{3^n}=3-\frac{1}{3^n}=\frac{3^{n+1}-1}{3^n}\)
=>\(S=\frac{3^{n+1}-1}{3^n}:2=\frac{3^{n+1}-1}{3^n.2}\)
Vậy.................
A = 1 + 2 + 22 + 23 + ... + 299 + 2100 . (1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{101}\) (2)
Trừ 2 vế của (1) và (2) cho nhau được \(A=2^{101}-1\)
Ta có: A = 1 + 2 + 22 + 23 + ... + 299 + 2100.
2A = 2 (1 + 2 + 22 + 23 + ... + 299 + 2100)
= \(2\cdot1+2\cdot2+2\cdot2^2+2\cdot2^3+...+2\cdot2^{99}+2\cdot2^{100}.\)
2A = \(2+2^2+2^3+2^4+...+2^{100}+2^{101}.\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
A = \(2^{101}-1\).
Vậy A = 2101 - 1.