K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

\(3\left(2a-1\right)+5\left(3-a\right)\)

\(=6a-3+15-5a\) 

\(=a+12\)

8 tháng 9 2020

3( 2a - 1 ) + 5( 3 - a )

= 6a - 3 + 15 - 5a

= a + 12

Rồi a bằng bao nhiêu thì bạn thay vào

#Good luck :)

11 tháng 12 2019

Ta có :

\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

a) Giá trị của biểu thức A xác định 

\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)

Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

b) Ta có :

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)

\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)

c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :

\(A=\frac{-1-1}{2}=-1\)

Vậy tại a = -1 thì giá trị của biểu thức A là - 1

d) Cho A = 0 , ta có :

\(\frac{a-1}{2}=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )

Vậy a = 1 thì giá trị của biểu thức A = 0 .

10 tháng 12 2019

\(a.ĐKXĐ:\)\(2a+10\ne0\)            \(a\ne-5\)

                 \(a\ne0\)               \(\Leftrightarrow\)\(a\ne0\)     \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

                 \(2a\left(a+5\right)\ne0\)        \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

     \(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

   \(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)   

   \(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)

   \(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\) 

   \(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)

\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)

                                          \(=-1\left(t/mđk\right)\)

\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)

                    \(\Rightarrow a-1=2.0\)

                    \(\Rightarrow a-1=0\)

                    \(\Rightarrow a=1\left(t/mđk\right)\)

24 tháng 10 2021

\(A=\left(2x-1\right)^2-\left(2x+3\right).\left(x-2\right)-2.\left(x+2\right).\left(x+5\right)\)

\(=\left(2x-1\right)^2-\left(2x+3\right).\left(x-2\right)-2.\left(x+2\right).\left(x+5\right)\)

\(=4x^2-4x+1-2x^2-3x+4x+6-2x^2-4x-10x-20\)

\(=4x^2-2x^2-2x^2-4x-3x+4x-4x-10x+1+6-20\)

\(=0-17x-13\)

\(=-17x-13\)

Ta thay \(x=-3\) vào

\(A=-17.\left(-3\right)-13=38\)

27 tháng 7 2020

Viết rõ đề bài ra đc không ạ

27 tháng 7 2020

đấy là phân số

17 tháng 9 2018

\(A=\left(2x-1\right)^2-\left(2x+3\right)\left(x-2\right)-2\left(x+2\right)\left(x+5\right)\)

\(=4x^2-4x+1-\left(2x^2-x-6\right)-2\left(x^2+7x+10\right)\)

\(=-17x-13\)

Thay x=-3 vào A,ta được 

\(A=\left(-17\right)\cdot\left(-3\right)-13\)

\(=38\)

Vậy A=38 tại x=-3

17 tháng 9 2018

A = ( 2x - 1 )2 - ( 2x + 3 )( x- 2) - 2( x + 2 )( x + 5 )

   = 4x2 - 4x + 1 - 2x2 - 4x + 3x - 6 - 2x - 4 + x + 5

   = 2x2 - 6x - 4

Thay x = -3 vào biểu thức ta được:

    2 . ( -3 )2 - 6 . ( -3 ) - 4

= 2 . 9 - 6 . ( -3 ) -4

= 18 + 18 - 4

= 32

Hk tốt

29 tháng 10 2021

\(a,A=4-4x+x^2+6x^2-8x-8+9x^2+12x+4\\ A=16x^2\\ b,x=-\dfrac{1}{2}\Leftrightarrow A=16\cdot\dfrac{1}{4}=4\)

29 tháng 10 2021

a: \(A=x^2-4x+4+9x^2-12x+4+2\left(3x^2+2x-6x-4\right)\)

\(=10x^2-16x+8+6x^2-8x-8\)

\(=16x^2-24x\)

b: \(A=16\cdot\dfrac{1}{4}-24\cdot\dfrac{-1}{2}=4+12=16\)