K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

\(Q=3^1+3^2+3^3+...+3^{200}\\3\cdot Q=3^2+3^3+3^4+...+3^{201}\\3Q-Q=(3^2+3^3+3^4+...+3^{201})-(3^1+3^2+3^3+...+3^{200})\\2Q=3^{201}-3\\\Rightarrow Q=\dfrac{3^{201}-3}{2}\)

21 tháng 10 2023

\(Q=3+3^2+...+3^{200}\)

\(3Q=3\cdot\left(3+3^2+...+3^{200}\right)\)

\(3Q=3^2+3^3+...+3^{201}\)

\(3Q-Q=3^2+3^3+...+3^{201}-3-3^2+...-3^{200}\)

\(2Q=3^{201}-3\)

\(Q=\dfrac{3^{201}-3}{2}\)

31 tháng 3 2022

B= -1/3+1/3^2-1/3^3+…+1/3^100-1/3^101

3B= -1+1/3-1/3^2+…+1/3^99-1/3^100

3B+B=4B=-1-1/3^101

=>B=(-1-1/3^101)/4

Vậy B=(-1-1/3^101)/4

26 tháng 10 2020

\(B=2+2^2+2^3+...+2^{203}\)

\(2B=2^2+2^3+2^4+...+2^{204}\)

\(2B-B=\left(2^2+2^3+2^4+...+2^{204}\right)-\left(2+2^2+2^3+...+2^{203}\right)\)

\(B=2^{204}-2\)

Câu C mk nghĩ là thế này

\(C=1+3+3^2+...+3^{101}\)

\(3C=3+3^2+3^3+...+3^{102}\)

\(3C-C=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2C=3^{102}-1\)

\(C=\frac{3^{102}-1}{2}\)

15 tháng 10 2016

sai đề rồi làm j có 1! hay 2! hay ...

Sửa đề đi rồi tui làm cho

31 tháng 12 2018

a/ \(M=1+3+3^2+.....+3^{119}\)

\(\Leftrightarrow3M=3+3^2+.....+3^{119}+3^{120}\)

\(\Leftrightarrow3M-M=\left(3+3^2+.....+3^{120}\right)-\left(1+3+....+3^{119}\right)\)

\(\Leftrightarrow2M=3^{120}-1\)

\(\Leftrightarrow M=\dfrac{3^{120}-1}{2}\)

b/ \(M=1+3+3^2+..........+3^{119}\)

\(=\left(1+3+3^2\right)+........+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=1\left(1+3+3^2\right)+........+3^{117}\left(1+3+3^2\right)\)

\(=1.13+.....+3^{117}.13\)

\(=13\left(1+.....+3^{117}\right)⋮13\Leftrightarrow M⋮13\left(đpcm\right)\)

31 tháng 12 2018

còn chia hết cho 5 không nữa mà bạn