Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-10x^3y\left(\frac{2}{5}x^2y+\frac{3}{10}xy^2\right)+3x^4y^3\)
\(=-4x^5y^2-3x^4y^3+3x^4y^3=-4x^5y^2\)
\(-10x^3y\left(\frac{2}{5}x^2y+\frac{3}{10}xy^2\right)+3x^4y^3\)
\(=\left[\left(-10x^2\right)\left(y\right)\right].\left[\left(\frac{2}{5}x^2\right)\left(y\right)+\left(\frac{3}{10}x\right)\left(y^2\right)\right]+3x^4y^3\)
\(=-4x^5y^2-3x^4y^3+3x^4y^3\)
\(=-4x^5y^2\)
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
Bài giải:
a) 5x2y4 : 10x2y = 510510x2 – 2. y4 – 1 = 1212y3
b) 3434x3y3 : (- 1212x2y2) = 3434 . (-2) . x3 – 2 . y3 – 2 = -3232xy
c) (-xy)10 : (-xy)5 = (-xy)10 – 5 = (-xy)5 = -x5y5.
\(a,\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}=\dfrac{x^2-1}{x}\)
\(b,\dfrac{x^3y+xy^3+xy}{x^3+y^3+x^2y+xy^2+x+y}\)
\(=\dfrac{xy\left(x^2+y^2+1\right)}{\left(x^3+xy^2+x\right)+\left(y^3+x^2y+y\right)}\)
\(=\dfrac{xy\left(x^2+y^2+1\right)}{x\left(x^2+y^2+1\right)+y\left(x^2+y^2+1\right)}\)
\(=\dfrac{xy\left(x^2+y^2+1\right)}{\left(x^2+y^2+1\right)\left(x+y\right)}\)
\(=\dfrac{xy}{x+y}\)
\(c,\dfrac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}\)
\(=\dfrac{\left(3x+2-x-2\right)\left(3x+2+x+2\right)}{x\left(x^2-1\right)}\)
\(=\dfrac{2x.\left(4x+4\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{8\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{8}{x-1}\)