Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)
1. \(x^2+x-6=0\)
\(x^2-2x+3x-6=0\)
\(x\left(x-2\right)+3\left(x-2\right)=0\)
\(\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
2.f(x)=\(x^2-2.2x+4+6\)
\(=\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
->\(\left(x+2\right)^2+6\ge6\)
Dấu = xẩy ra khi x+2=0 <=>x=2
\(A=x\left(4x-1\right)-\left(4x^2-3\right)\)
\(=4x^2-x-4x^2+3\)
=-x+3