K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

em hồng biết

21 tháng 9 2016

chúc mừng chị dung

22 tháng 9 2016

theo tớ thì có đó 

 bạn thử tìm coi

    Đ/s : có  tồn tại n thỏa mãn điều kiện 

25 tháng 9 2016

Hoàng Lê Bảo Ngọc

25 tháng 9 2016

Hoàng Lê Bảo Ngọc

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

6 tháng 7 2018

Ta có:

n2 là số chính phương

Mà n khác 0

\(\Rightarrow\)Có 2 trường hợp:

TH1: n là số chẵn

Ví dụ: n = 2

\(\Rightarrow n^2+n+1=2^2+2+1=4+2+1=7\)

Mà 7 không có số nào mũ 2 bằng

\(\Rightarrow n^2+n+1\)là số lẻ và \(n^2+n+1\)không thể là số chính phương

TH2:

n là số lẻ

Ví dụ: n = 3

\(\Rightarrow n^2+n+1=3^2+3+1=9+3+1=13\)

Mà 13 không có số nào mũ 2 bằng cả

\(\Rightarrow n^2+n+1\)là số lẻ và không thể là số chính phương

Qua 2 trường hợp trên, ta kết luận: với n là số tự nhiên khác 0 thì \(n^2+n+1\)là số lẻ và không thể là số chính phương

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

20 tháng 9 2019

Bài 2:

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(A=12x\left(x-2\right)+xy\left(x-2\right)\left(y+6\right)+3y\left(y+6\right)+36\)

Đặt \(x\left(x-2\right)=a;y\left(y+6\right)=b\)

\(A=12a+ab+3b+36\)

\(A=a\left(b+12\right)+3\left(b+12\right)\)

\(A=\left(b+12\right)\left(a+3\right)\)

\(A=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(A=\left[\left(x-1\right)^2+2\right]\left[\left(y+9\right)^2+3\right]>0\forall x;y\)

Bài 3:

\(3xy+x+15y-164=0\)

\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)-169=0\)

\(\Leftrightarrow\left(3y+1\right)\left(x+5\right)=169\)

Tới đây xét ước là xong.

p/s: Còn 2 bài trưa về giải nốt em nhé.

20 tháng 9 2019

Bài 4:*Tìm Max

Xét hiệu: \(5x^2+8xy+5y^2-A=4x^2+8xy+4y^2=4\left(x+y\right)^2\ge0\)

Từ đó \(A\le5x^2+8xy+5y^2=72\)

Đẳng thức xảy ra khi x =-y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) =(6;-6) và (-6 ; 6)

Vậy Max A là 72.

*Tìm min:

Xét hiệu: \(9A-\left(5x^2+8xy+5y^2\right)=4x^2-8xy+4y^2=4\left(x-y\right)^2\)

Do đó \(9A\ge5x^2+8xy+5y^2=72\Rightarrow A\ge8\)

Đẳng thức xảy ra khi x = y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) = (2;2) ; (-2;-2)

Vậy...

P/s: Check lại cái "đẳng thức xảy ra khi..." nhé, có thể nhầm lẫn đấy.