Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba anh ấy đẹp trai quá!!!!!!!! Love love <3!!!!!!!!
Ta có:
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...\frac{1}{50.51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}\)
Vì \(\frac{1}{2}-\frac{1}{51}<1\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
\(y<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(y<1-\frac{49}{50}<1\)
=> y < 1
Trường Tiểu học là 53
trường THCS là 37
trường THPT là 10
mình cũng ko biết nữa nhưng mình cũng tính ra như cậu !!!!
đẹp vãi
đẹp nhưng rảnh quá à mai tớ thi 2 môn chính rùi