Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu em là một trong các bạn nhỏ trên em sẽ gạch bỏ 3 số: 5,6,8. Vì tổng của tất cả các số đó là 231 mà tổng của 3 số em sẽ gạch bỏ là 19 và 231 - 19 = 212
b) Khẳng định của bạn Tuấn là sai vì ba số giống nhau cộng lại không bằng 19.
a/ Các trường hợp xảy ra:
1;2;16
2;3;14
3;4;12
4;5;10
5;6;8
7;8;4
8;9;2
Như vậy có 7 trường hợp gạch 3 số theo yêu cầu
b/ Do có 7 trường hợp gạch mà lớp có 8 học sinh đến 10 hs nên theo nguyên lý dirichlet có ít nhất 2 bạn cùng gạch bỏ 3 số giống nhau nên khẳng định của Tuấn là đúng
Bạn có viết sai một chút ở đề bài. Số đúng phải là: \(66313083693369353016721801214\) (bạn viết thiếu một chữ số \(1\)nằm giữa chữ số \(2\)và chữ số \(8\)).
Ta chú ý rằng số của An thu được phải chia hết cho \(8\)và \(9\).
Để số An thu được chia hết cho \(8\)thì số tạo bởi ba chữ số tận cùng của nó chia hết cho \(8\).
\(\overline{21a}\)chia hết cho \(8\)suy ra \(a=6\).
Số thu được chia hết cho \(9\)nên tổng các chữ số của nó chia hết cho \(9\).
Tổng các chữ số còn lại (ngoại trừ chữ số đầu tiên) là: \(106\).
Để tổng các chữ số chia hết cho \(9\)thì chữ số đầu tiên là chữ số \(2\).
Số đúng là: \(26323083693369353016721801216\).
trước khi trả lời mình muốn bạn ks đúng câu này cho mình được không?
Theo đầu bài thì tổng của tất cả số HS và tất cả số HS và 1/2 số HS và 1/4 số HS của lớp sẽ bằng: 100 - 1 = 99 (em)
Để tìm được số HS của lớp ta có thể tìm trước 1/4 số HS cả lớp.
Giả sử 1/4 số HS của lớp là 1 em thì cả lớp có 4 HS
Vậy : 1/4 số HS của lớp là : 4 : 2 = 2 (em).
Suy ra tổng nói trên bằng : 4 + 4 + 2 + 1 = 11 (em)
Nhưng thực tế thì tổng ấy phải bằng 99 em, gấp 9 lần 11 em (99 : 11 = 9) Suy ra số HS của lớp là : 4 x 9 = 36 (em)
Thử lại: 36 + 36 = 36/2 + 36/4 + 1 = 100
Đáp số: 36 học sinh.
lấy cái dép táng cái bản mặt của con bạn vì đã xem dratelling quá nhiều
Giả sử cho trước 4 số a, b, c, d
Nếu tính trung bình cộng của 3 số bất kì trong 4 số trên thì ta có 4 số trung bình cộng sau:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
Khi đó ta có tổng của 4 số trung bình cộng là:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
\(=\frac{\left(a+b+c+d\right)x3}{3}=\) a + b + c + d
Do đó tổng của 4 số ở bất cứ lần viết nào cũng luôn bằng tổng của 4 số ban đầu.
Tổng của 4 số ban đầu là:
3 + 6 + 9 + 12 = 30
Tổng 4 số của bạn Toàn viết là:
17/9 + 13/9 + 10 + 47/3 = 29 ( 29 khác 30 )
Do đó bạn Toàn chắc chắn đã tính sai.
Giả sử cho trước 4 số a, b, c, d
Nếu tính trung bình cộng của 3 số bất kì trong 4 số trên thì ta có 4 số trung bình cộng sau:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
Khi đó ta có tổng của 4 số trung bình cộng là:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
=\(\frac{\left(a+b+c+d\right)x3}{3}=a+b+c+d\)
Do đó tổng của 4 số ở bất cứ lần viết nào cũng luôn bằng tổng của 4 số ban đầu.
Tổng của 4 số ban đầu là:
3 + 6 + 9 + 12 = 30
Tổng 4 số của bạn Toàn viết là:
17/9 + 13/9 + 10 + 47/3 = 29 ( 29 khác 30 )
Do đó bạn Toàn chắc chắn đã tính sai.
Sẽ xảy ra một trong hai trường hợp : C hai số đều chẵn (hoặc đều lẻ) ; một số chẵn và một số lẻ.
a) Hai số chẵn (hoặc hai số lẻ). Tổng, hiệu của hai số đó là số chẵn. Số chẵn nhân với chính nó được số chẵn. Do đó cộng hai tích (là hai số chẵn) phải được số chẵn.
b) Một số chẵn và một số lẻ. Tổng, hiệu của chúng đều là số lẻ. Số lẻ nhân với chính nó được số lẻ. Do đó cộng hai tích (là hai số lẻ) phải được số chẵn.
Vậy theo điều kiện của bài toán thì kết quả của bài toán phải là số chẵn.
Nếu Nam chọn 2010x1211 thì được tích chẵn, Bình chọn 2011x1112 cũng được tích chẵn => tổng của hai tích là 1 số chẵn
Nếu Nam chọn 2011x1211 thì được tích lẻ, Bình chọn 2010x1112 được tích chẵn => tổng hai tích là 1 số lẻ
Vậy Nam đã chọn số 2010
Số bạn Nam chọn là số 2010