K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):(\sqrt{x}-1), với x\geq 0,x\not =1.

a)Rút gọn A;

1 tháng 4 2019

Đề đây ạ https://nttuan.org/2010/05/09/topic-68/

11 tháng 7 2016

\(a.\left(2-\sqrt{3}+\sqrt{5}\right)\left(2-\sqrt{5}+\sqrt{3}\right)\)

\(=4-\left(\sqrt{3}-\sqrt{5}\right)^2\)

\(=4-3+2\sqrt{15}-5\)

\(=2\sqrt{15}-4\)

\(b.2\sqrt{3}\left(\sqrt{3}-3\right)-\left(3\sqrt{3}-1\right)^2\)

\(=6-6\sqrt{3}-27+6\sqrt{3}-1\)

\(=-22\)

ok

 

15 tháng 4 2020

Mình có thấy gì đâu bạn?

3 tháng 7 2021

\(7:a,\sqrt{2-x}=3\)

\(\left|2-x\right|=3^2=9\)

\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)

\(b,\sqrt{4-4x+x^2}=3\)

\(\sqrt{\left(2-x\right)^2}=3\)

\(\left|2-x\right|=3\)

\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)

\(c,\sqrt{4+x^2}+x=3\)

\(\sqrt{4+x^2}=3-x\)

\(4+x^2=\left(3-x\right)^2\)

\(4+x^2=9-6x+x^2\)

\(x=\frac{5}{6}\left(TM\right)\)

\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)

\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)

\(\sqrt{x-2}\left(2-4+3\right)=5\)

\(\sqrt{x-2}=5\)

\(\left|x-2\right|=25\)

\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)

3 tháng 7 2021

thank

10 tháng 8 2021

1)\(\sqrt{27\left(1-\sqrt{3}\right)^2}\div3\sqrt{15}=\left(3\sqrt{3}\left|1-\sqrt{3}\right|\right)\div3\sqrt{15}=\left(9-3\sqrt{3}\right)\div3\sqrt{15}\)

\(=\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{5}=\frac{\sqrt{15}-\sqrt{5}}{5}\)

2) ĐK : a > 0

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(a-\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a-\sqrt{a}+1}=a-1\)

3) \(\sqrt{15}-\sqrt{6}=\sqrt{3}\cdot\sqrt{5}-\sqrt{3}\cdot\sqrt{2}=\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)\)