Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2
Vậy Tam giác ABC vuông tại A (đl Pytago đảo)
b) Ta có: Góc B + góc C = 90 độ (cmt câu a)
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H)
=> Góc B = góc HAC
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH)
Vậy Tam giác HBA ~ tam giác HAC (góc - góc)
c)
Theo tính chất đường phân giác trong tam giác:
MB/ AB = MC / AC
<=> MB. AC = MC . AB
<=> MB . AC = (35- MB) . AB
<=> 35AB= MB.(AB+AC)
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm
=> MC= 35 - 15 = 20 cm
Vậy MB = 15 cm, MC 20 cm
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)
a)Ta có:`AB^2+AC^2=21^2+28^2=1225`
Mà `BC^2=1225`
Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`
`=>` tam giác ABC vuông
b)Vì BAC vuông tại A
`=>hat{BAC}=90^o`
`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`
Xét tam giác HBA và tam giác HAC có"
`hat{HAB}=hat{HCA}`(CMT)
`hat{BHA}=hat{HAC}=90^o`
`=>` tam giác HBA đồng dạng với tam giác HAC(gg)
c)Xét tam giác ACH và tam giác BAC ta có:
`hat{AHC}=hat{BAC}=90^o`
`hat{ACB}` chung
`=>DeltaACH~DeltaBAC(gg)`
`=>(AC)/(BH)=(BC)/(AC)`
`=>AC^2=BH.BC`.
d)Đường phân góc gì nhỉ?
Hình bạn tự vẽ nhé...
a)
Xét tam giác BAH và tam giác ABC , có :
A^ = H^ = 90O
B^ : góc chung
=> tam giác HAB ~ tam giác ACB ( g.g)
c)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 122 + 166 = BC2
=> BC2 = 400
=> BC = 20 cm
Vì tam giác ACB ~ tam giác HAB , nên ta có :
AH/AC= AB/BC
=> AH/16=12/20
=> AH = 9,6 cm.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
Lời giải:
a) Ta thấy: \(21^2+28^2=35^2\)
\(\Leftrightarrow AB^2+AC^2=BC^2\)
Áp dụng định lí Py-ta-go
\(\Rightarrow\Delta ABC\) vuông tại $A$
Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{H}=\widehat{A}=90^o\)
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{CA}=\dfrac{AB}{CB}\\ \Rightarrow\dfrac{AH}{28}=\dfrac{21}{35}\\ \Rightarrow AH=16,8cm\)
a: Vì BC^2=AB^2+AC^2
nên ΔABC vuông tại A
\(AH=\dfrac{21\cdot28}{35}=16.8\left(cm\right)\)
b: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó; ΔHBA đồng dạng với ΔABC
c: Xét ΔABC có AM là phân giác
nên MB/AB=MC/AC
=>MB/3=MC/4=(MB+MC)/(3+4)=35/7=5
=>MB=15cm; MC=20cm