Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sin^2x+\cos^2x\right)^2=1\)
\(\sin^4x+\cos^4x+2\sin^2x.\cos^2x=1\)
=> dpcm
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(1+cos2a+\frac{1-cos2a}{2}-1\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(cos2a+\frac{1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{2cos2a+1-cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{1+cos2a}\)\(\left(\frac{1+cos2a}{2}\right)\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a}{2}\)+\(\frac{1+cos2a}{2}\)
=\(\frac{1-cos2a+1+cos2a}{2}\)
=\(\frac{2}{2}\)=1
1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)
=1
2: \(sin^4x-cos^4x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2\cdot cos^2x\)
bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)
\(\Rightarrow cosa=\pm\dfrac{4}{5}\)
\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)
bài 2)
ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)
b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)
c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)
\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)
ý 2 :
ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)
ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)
\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)
vậy ............................................................................
bài 3 bạn tự luyện tập như bài 2 cho quen nha :)
c)
\(\cos\left(x\right)^4+\sin\left(x\right)^2\cos\left(x\right)^2+\sin\left(x\right)^2\\ =\left(\cos\left(x\right)^2+\sin\left(x\right)^2\right)\cos\left(x\right)^2+\sin\left(x\right)^2\\ =\cos\left(x\right)^2+\sin\left(x\right)^2\\ =1\)
\(\cos\left(x\right)^4-\sin\left(x\right)^4+2\sin\left(x\right)^2\\ =\left(\cos\left(x\right)^2-\sin\left(x\right)^2\right)\left(\cos\left(x\right)^2+\sin\left(x\right)^2\right)+2\sin\left(x\right)^2\\ =\cos\left(2x\right)\cdot1+2\sin\left(x\right)^2\\ =\cos\left(x\right)^2-\sin\left(x\right)^2+2\sin\left(x\right)^2\\ =\cos\left(x\right)^2+\sin\left(x\right)^2\\ =1\)
\(=\frac{sin^2x}{cos^2x}\left(cos^2x+sin^2x-1+cos^2x\right)+cos^2x\)
\(=\frac{sin^2x}{cos^2x}\left(1-1+cos^2x\right)+cos^2x\)
\(=\frac{sin^2x.cos^2x}{cos^2x}+cos^2x=sin^2x+cos^2x=1\)