Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^4+4x^2-5\)
\(=\left(x^4+4x^2+4\right)-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2-3\right)\left(x^2+2+3\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
b/ \(5x^3-5x^2y-10x^2+10xy\)
\(=\left(5x^3-10x^2\right)-\left(5x^2y-10xy\right)\)
\(=5x^2\left(x-2\right)-5xy\left(x-2\right)\)
\(=\left(x-2\right)\left(5x^2-5xy\right)\)
\(=\left(x-2\right)5x\left(x-y\right)\)
a) Ta có: \(8x^2+30x+7\)
\(=8x^2+28x+2x+7\)
\(=4x\left(2x+7\right)+\left(2x+7\right)\)
\(=\left(2x+7\right)\left(4x+1\right)\)
b) Ta có: \(4x^3-12x^2+9x\)
\(=x\left(4x^2-12x+9\right)\)
\(=x\left(2x-3\right)^2\)
c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=\left(x+2\right)\cdot3x\)
d) Ta có: \(ab+c^2-ac-bc\)
\(=\left(ab-bc\right)+\left(c^2-ac\right)\)
\(=b\left(a-c\right)+c\left(c-a\right)\)
\(=b\left(a-c\right)-c\left(a-c\right)\)
\(=\left(a-c\right)\left(b-c\right)\)
e) Ta có: \(4x^2-y^2+1-4x\)
\(=\left(4x^2-4x+1\right)-y^2\)
\(=\left(2x-1\right)^2-y^2\)
\(=\left(2x-1-y\right)\left(2x-1+y\right)\)
f) Ta có: \(6x^2-7x-20\)
\(=6x^2-15x+8x-20\)
\(=3x\left(2x-5\right)+4\left(2x-5\right)\)
\(=\left(2x-5\right)\left(3x+4\right)\)
\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\), \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)
\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)
\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)
\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)
a) \(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
b) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
a: Ta có: \(x^2-4x\left(3x-4\right)+7x-5\)
\(=x^2-12x^2+16x+7x-5\)
\(=-11x^2+23x-5\)
b: Ta có: \(7x\left(x^2-5\right)-3x^2y\left(xy-6y^2\right)\)
\(=7x^3-35x-3x^3y^2+18x^2y^3\)
c: Ta có: \(\left(5x+4\right)\left(2x-7\right)\)
\(=10x^2-35x+8x-28\)
\(=10x^2-27x-28\)
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
6x3 - 7x2 + 5x - 2
= 6x3 - 4x2 - 3x2 + 2x + 3x - 2
= 6x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(6x2 - 3x + 3)
= 3(x - 2/3)(2x2 - x + 1)
4x3 + 5x2 + 10x - 12
= 4x3 - 3x2 + 8x2 - 6x + 16x - 12
= 4x2(x - 3/4) + 8x(x - 3/4) + 16(x - 3/4)
= (x - 3/4)(4x2 + 8x + 16)
= 4(x - 3/4)(x2 + 2x + 4)
4x3 - 7x2 - x + 3
= 4x3 - 3x2 - 4x2 + 3x - 4x + 3
= 4x2(x - 3/4) - 4x(x - 3/4) - 4(x - 3/4)
= (x - 3/4)(4x2 - 4x - 4)
= 4(x - 3/4)(x2 - x - 1)
4x3 - 5x2 + 6x + 9
= 4x3 + 3x2 - 8x2 - 6x + 12x + 9
= 4x2(x + 3/4) - 8x(x + 3/4) + 12(x + 3/4)
= (x + 3/4)(4x2 - 8x + 12)
= 4(x + 3/4)(x2 - 2x + 3)
3x3 - 5x2 + 5x - 2
= 3x3 - 2x2 - 3x2 + 2x + 3x - 2
= 3x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(3x2 - 3x + 3)
= 3(x - 2/3)(x2 - x + 1)
Bài 1:
a) \(x^2-2xy-25+y^2\) (Sửa đề)
\(=x^2-2xy+y^2-25\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
Vậy ...
b) \(x\left(x-1\right)+y\left(1-x\right)\)
\(=x\left(x-1\right)-y\left(x-1\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
Vậy ...
c) \(7x+7y-\left(x+y\right)\) (Sửa đề)
\(=7\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(7-1\right)\)
\(=6\left(x+y\right)\)
Vậy ...
d) \(x^4+y^4\)
\(=\left(x^2\right)^2+\left(y^2\right)^2\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)
Vậy ...
Hệ số bất định thử xem sao nha ! Check luôn nha Nguyễn Tấn Phát ~
Nháp:
Ta nhẩm nghiệm được \(a=-3\) nên khi phân tích nó sẽ có nhân tử là \(x+3\)
Giả sử khi phân tích thành nhân tử nó sẽ có dạng:\(\left(x+3\right)\left(x^3+ax^2+bx+c\right)\)
\(=x^4+ax^3+bx^2+cx+3x^3+3ax^2+3bx+3c\)
\(=x^4+\left(a+3\right)x^3+\left(3a+b\right)x^2+\left(c+3b\right)x+3c\)
Mà \(\left(x+3\right)\left(x^3+ax^2+bx+c\right)=x^4+4x^3+5x^2+7x+3\)
Cân bằng hệ số ta được:
\(a=1;b=2;c=1\)
Khi đó \(x^4+4x^3+5x^2+7x+3=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)
Bài làm
Ta có:
\(x^4+4x^3+5x^2+7x+3\)
\(=\left(x^4+x^3+2x^2+x\right)+\left(3x^3+3x^2+6x+3\right)\)
\(=x\left(x^3+x^2+2x+1\right)+3\left(x^3+x^2+2x+1\right)\)
\(=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)
P/S:Mik nghĩ đến đây là hết rồi:3