Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^3-8x^2+4x\)
\(=3x^3-6x^2-2x^2+4x\)
\(=3x^2\left(x-2\right)-2x\left(x-2\right)\)
\(=\left(x-2\right)\left(3x^2-2x\right)\)
\(=x\left(x-2\right)\left(3x-2\right)\)
Áp dụng bất đẳng thức $x^2+y^2+z^2 \geq xy+yz+zx$ có:
$a^4+b^4+c^4 \geq (ab)^2+(bc)^2+(ca)^2 \geq abbc+bcca+abca=abc(a+b+c)$
b, đề đúng: $\dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Có \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}$
$\geq \dfrac{a^2+b^2+c^2}{abc} \geq \dfrac{ab+bc+ca}{abc}= \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Cả hai phần dấu $=$ xảy ra $⇔a=b=c$
\( \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}\)
chỗ bị sai đây bạn nhé
a) \(A=1+8+8^2+8^3+....+8^7\)
\(\Rightarrow8A=8+8^2+8^3+8^4+....+8^8\)
\(\Rightarrow8A-A=8^8-1\)
\(\Rightarrow A=\frac{8^8-1}{7}\)
Các bạn có thể tính cụ thể ra vì đây là số nhỏ nhưng đối vs những bài số to thì các bạn chỉ cần làm đến đây thôi
Vậy............
b) \(B=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(=\left(3^2+1\right)\left(9^2+1\right)\left(81^2+1\right)\)
\(\Rightarrow\left(3^2-1\right)B=\left(3^2-1\right)\left(3^2+1\right)\left(9^2+1\right)\left(81^2+1\right)\)
\(\Rightarrow8B=\left(9^2-1\right)\left(9^2+1\right)\left(81^2+1\right)\)
\(\Rightarrow8B=\left(81^2-1\right)\left(81^2+1\right)\)
\(\Rightarrow8B=\left(81^4-1\right)\)
\(\Rightarrow B=\frac{81^4-1}{8}\)
Vậy...........
Giả sử đpcm là đúng , khi đó , ta có :
\(a^8+b^8+c^8\ge a^3b^3c^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow a^8+b^8+c^8\ge a^3b^3c^3.\frac{ab+bc+ac}{abc}=a^2b^2c^2\left(ab+bc+ac\right)\left(1\right)\)
Vì a ; b ; c > 0 , áp dụng BĐT phụ \(x^2+y^2+z^2\ge xy+yz+xz\) , ta có :
\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+a^4c^4\ge a^2b^2.b^2c^2+b^2c^2.c^2a^2+a^2b^2.c^2a^2=a^2c^2b^4+a^2b^2c^4+a^4b^2c^2\)
\(=\left(abc^2\right)^2+\left(bca^2\right)^2+\left(acb^2\right)^2\ge abc^2.bca^2+bca^2.acb^2+abc^2.acb^2=a^3b^2c^3+b^3a^3c^2+c^3b^3a^2\)
\(=a^2b^2c^2\left(ab+bc+ac\right)\)
Nên : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)
=> BĐT được c/m ( 2 )
Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng
=> ĐPCM
Ta có:
\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)
Áp dụng BĐT AM - GM:
\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)
Tiếp tục áp dụng AM - GM:
\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)
\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)
\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)
Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)
Mà \(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)
hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) (đúng)
Ta có đpcm
đề bài bạn thiếu k vậy
tìm a hay gì
áp dụng bất đẳng thức \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)ta có:
\(\left(a^8+b^8\right)\ge\frac{1}{2}\left(a^4+b^4\right)^2\)
\(\left(a^4+b^4\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=1\)
từ các bất đẳng thức trên =>đpcm
a. Đề:\(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)
Giải :\(\Rightarrow\hept{\begin{cases}2x-1=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=0+1=1\\3y=0-5=-5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{5}{3}\end{cases}}}\)
b. Đề : \(x^2+y^2-2x+10y+26=0\)
Giải : \(\Leftrightarrow x^2-2.1.x+1+y^2+2.5.y+25=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0+1=1\\y=0-5=-5\end{cases}}}\)
Đây là bài 1 bài 2 đang ghi nha
t i c k nha cảm ơn
bó tay
Theo bài ra , ta có :
\(a^8+a+1=a\left(a^7.1\right)=1\)
Sai đề nha tran xuan hoang