Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(\left(x^2-25\right)^2-\left(x-5\right)^2\)
<=>\(\left[\left(x-5\right)\left(x+5\right)\right]^2-\left(x-5\right)^2\)
<=>\(\left(x-5\right)^2\left[\left(x+5\right)^2-1\right]\)
2/\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
<=>\(\left[\left(2x-5\right)\left(2x+5\right)\right]^2-9\left(2x-5\right)^2\)
<=>\(\left(2x-5\right)\left[\left(2x+5\right)^2-9\right]\)
#hoctot<3#
Ta có: \(\dfrac{-4x^2}{x^2-25}-\dfrac{2x^2+x}{x^2-25}-\dfrac{2x}{5-x}\)
\(=\dfrac{-4x^2-2x^2-x}{\left(x-5\right)\left(x+5\right)}+\dfrac{2x}{x-5}\)
\(=\dfrac{-6x^2-x}{\left(x-5\right)\left(x+5\right)}+\dfrac{2x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-6x^2-x+2x^2+10x}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4x^2+9x}{\left(x-5\right)\left(x+5\right)}\)
\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
\(---\)
\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(---\)
\(c,4x(x-2)-x(3+4x)(?)\)
\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)
\(---\)
\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
\(---\)
\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(Toru\)
\(\dfrac{x}{x-3}+\dfrac{-9}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{-9}{x\left(x-3\right)}=\dfrac{x^2-9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=\dfrac{x+3}{x}\)
\(\dfrac{x-5}{x^2-4x+4}:\dfrac{x^2-25}{2x-4}=\dfrac{x-5}{\left(x-2\right)^2}.\dfrac{2\left(x-2\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{2}{\left(x-2\right)\left(x+5\right)}\)
a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)
\(=36\)
Bài 2:
a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)
b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)
\(=64x^3-16x^2-100x+125\)
a) \(PT\Leftrightarrow3x-2x=2-3\Leftrightarrow x=-1\)
Vậy: \(S=\left\{-1\right\}\)
b) \(PT\Leftrightarrow-2x+3x=-7+22\Leftrightarrow x=15\)
Vậy: \(S=\left\{15\right\}\)
c) \(PT\Leftrightarrow8x-5x=3+12\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy: \(S=\left\{5\right\}\)
d) \(PT\Leftrightarrow x+4x-2x=12+25-1\Leftrightarrow3x=36\Leftrightarrow x=12\)
Vậy: \(S=\left\{12\right\}\)
e) \(PT\Leftrightarrow x+2x+3x-3x=19+5\Leftrightarrow3x=24\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=12
=>x=4
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
a)\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
b)\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=0\)
\(\Leftrightarrow x\left(x^2+3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x^2+3=0\\x^2-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x\in\varnothing\\x=\pm\sqrt{3}\end{matrix}\right.\)
c)\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x-4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=1\\x=4\end{matrix}\right.\)
d)\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(2x+5\right)^2\left(2x-5\right)^2-3\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(2x-5\right)^2\left(4x^2+10x+5-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)^2\left(4x^2+4x+2x+2\right)=0\)
\(\Leftrightarrow\left(2x-5\right)^2\left[4x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(2x-5\right)^2.2\left(2x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\2x+1=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}=2,5\\x=-\dfrac{1}{2}=-0,5\\x=-1\end{matrix}\right.\)
1. (x^2-25)^2-(x-5)^2
=(x-5)2(x+5)2-(x-5)2
=(x-5)2.[(x+5)2-1)
=(x-5)2.(x+5-1)(x+5+1)
=(x-5)2.(x+4)(x+6)
2. (4x^2-25)^2-9(2x-5)^2
=(2x-5)2(2x+5)2-9.(2x-5)2
=(2x-5)2[(2x+5)2-9]
=(2x-5)2(2x+5-3)(2x+5+3)
=(2x-5)2(2x+2)(2x+8)
=4(2x-5)2(x+1)(x+4)