Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2)(x+3)(x+4)(x+5)-24
= [(x+2)(x+5)][(x+3)(x+4)] -24
=(x^2+7x+10)(x^2+7x+12)-24
thay x^2+7x+11=y
=> (y-1)(y+1)-24=y^2-1^2-24=y^2-25=(y-5)(y+5)
= (x^2+7x+11-5)(x^2+7x+11+5)=(x^2+7x+6)(x^2+7x+16)=(x^2+x+6x+6)(x^2+7x+16)=[x(x+1)+6(x+1)]((x^2+7x+16)=(x+1)(x+6)(x^2+7x+16)
(x + 2)(x + 3)(x + 5)(x + 7) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
=(x2 + 7x + 10)(x2 + 7x +12) - 24
Đặt x2 + 7x + 11 = t ; ta có:
(t - 1)(t + 1) - 24
= t2 - 12 - 24
= t2 - 25
= (t - 5)(t + 5)
Thay t = x2 + 7x + 11 ta được:
(x2 + 7x + 11 - 5)(x2 + 7x +11 + 5)
= (x2 + 7x + 6)(x2 + 7x + 16)
= (x + 1)(x + 6)(x2 + 7x + 16)
Chúc bn học tốt
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24
= (x2 + 4x + x +4)(x2 + 3x + 2x + 12) - 24
= (x2 + 5x + 4)(x2 + 5x + 12) - 24
Đặt t = x2 + 5x + 8
Ta có: x2 + 5x + 4 = x2 + 5x + 8 - 4 (1)
x2 + 5x + 12 = x2 + 5x + 8 + 4 (2)
Thay t = x2 + 5x + 8 vào (1) và (2), ta có:
⇒ (t - 4)(t + 4) - 24
= t2 - 16 - 24
= t2 - 40
= (t - \(\sqrt{40}\))(t + \(\sqrt{40}\))
= (x2 + 5x + 8 - \(\sqrt{40}\))(x2 + 5x + 8 + \(\sqrt{40}\))
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
x^3-x^2-7x+15=0
<=> x^3+3x^2-4x^2-12x+5x+15=0
<=> x^2(x+3)-4x(x+3)+5(x+3)=0
<=> (x+3)(x^2-4x+5)=0
<=> x+3=0 vì x^2-4x+5 khác 0
<=> x=-3
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)\(=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)-8\)
\(=\left(x^2+7x+11\right)^2-9\)
\(=\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
Tìm x:
\(8x^2-\left(2x+5\right)\left(4x-2\right)-9=0\)
\(\Leftrightarrow8x^2-\left(8x^2-4x+20x-10\right)-9=0\)
\(\Leftrightarrow8x^2-8x^2+4x-20x+10-9=0\)
\(\Leftrightarrow-16x+1=0\)
\(\Leftrightarrow-16x=-1\)
\(\Leftrightarrow x=\dfrac{-1}{-16}=\dfrac{1}{16}\)
Vậy \(x=\dfrac{1}{16}\)
Bài 1:
\(a,8x^2-\left(2x+5\right)\left(4x-2\right)-9=0\)
\(\Rightarrow8x^2-\left(8x^2+16x-10\right)-9=0\)
\(\Rightarrow8x^2-8x^2-16x+10-9=0\)
\(\Rightarrow-16x+1=0\)
\(\Rightarrow x=\dfrac{1}{16}\)
\(xz-yz-x^2+2xy-y^2\)
\(=z\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(z-x+y\right)\)
\(=x^2-xm-xn+mn=x\left(x-m\right)-n\left(x-m\right)=\left(x-n\right)\left(x-m\right)\)