Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)
<=>\(x-1-x+2=x-3\)
\(\Leftrightarrow\)\(x=4\)
Vậy pt có tập nghiệm \(S=\)4
c)
\(\sqrt{\left(x-1\right)^2}=2\)
x-1=2
x=3
d) \(\Leftrightarrow2+3\sqrt{x}+x=x+5\)
\(\Leftrightarrow3\sqrt{x}=3\)
<=> x=1
a)
\(\Leftrightarrow\sqrt{\left(x+2\right)}.\sqrt{\left(x-2\right)}-\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+2}=0\\\sqrt{x-2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
b)
\(\Leftrightarrow\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2}-\sqrt{2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{2}\)
\(\Leftrightarrow x-2=2\)
\(\Leftrightarrow x=4\)
2 phần kia mình đăng sau (dài quá r)
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
cần gấp thì mình làm cho
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)
\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(< =>x+1=\sqrt{x+1}\)
\(< =>\frac{x+1}{\sqrt{x+1}}=1\)
\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)
ĐKXĐ : \(x\ge-1\)
Bình phương 2 vế , ta có :
\(x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+2x+1-x-1=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\
Vậy ...............................
chuyển vế rồi bình phương 2 về được.
\(2-2x\sqrt{2}+x^2=1-2x\sqrt{2}+2x^2\)
<=> x2 -1 = 0
<=> x = +- 1