Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(x\geq 2\) hoặc \(x\leq \frac{-1}{2}\)
\((x^2-3x)\sqrt{2x^2-3x-2}\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} (x^2-3x)\sqrt{2x^2-3x-2}=0(1)\\ (x^2-3x)\sqrt{2x^2-3x-2}>0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow \left[\begin{matrix} x=0\\ x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.\). Kết hợp ĐKXĐ \(\Rightarrow \left[\begin{matrix} x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.(*)\)
Với (2) \(\Leftrightarrow \left\{\begin{matrix} x^2-3x>0\\ 2x^2-3x-2>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x(x-3)>0\\ (2x+1)(x-2)>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x< 0\\ x>3\end{matrix}\right.\\ \left[\begin{matrix} x>2\\ x< \frac{-1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x< \frac{-1}{2}\\ x>3\end{matrix}\right.(**)\)
Từ $(*)$ và $(**)$ ta có tập nghiệm của bpt là:
\(x=2; x\in (-\infty; \frac{-1}{2}]; x\in [3;+\infty)\)
Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.
\(x\left(x-1\right)^2\ge4-x\)
\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)
\(\Leftrightarrow x^3-2x^2+x\ge4-x\)
\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)
\(\Leftrightarrow x\ge2\)
Vậy \(S=\left\{2;+\infty\right\}\)
@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:
S = [ 2; \(+\infty\))
a) ĐK
\(\left\{{}\begin{matrix}x-3\ge0\\2-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\) (qvl)
b)
\(\sqrt{x^2+5}>\sqrt{x^2+3}\)
\(\Rightarrow\sqrt{3+x^2}-\sqrt{5+x^2}< 0\)
Suy ra bpt trên đề bài sai
c)
\(\Leftrightarrow2x^2-4x+2\le0\Leftrightarrow2\left(x^2-2x+1\right)\le0\Leftrightarrow2\left(x+1\right)^2\le0\) (vô lí)
d) \(\Leftrightarrow2x^2-2x+4\le0\Leftrightarrow2\left(x^2-x+\frac{1}{4}\right)+\frac{7}{2}\le0\) ( vô lí )
a/ \(x^2-2x-3=-m\)
Đặt \(f\left(x\right)=x^2-2x-3\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)
\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)
b/ \(-x^2+2mx-m+1=0\)
\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
c/ \(f\left(x\right)=2x^2-x-1=m\)
Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)
\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)
d/ \(f\left(x\right)=x^2-2x+1=m\)
Xét \(f\left(x\right)\) trên \((0;2]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)
Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)
\(x^2+4x+3=x-m\)
\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)
Xét hàm \(f\left(x\right)\)
\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)
Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)
Mặt khác \(x^2+3x+m+3=0\)
Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:
\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)
Từ (1) và (2) suy ra ko tồn tại m thỏa mãn
\(\left(16-x^2\right)\sqrt{x-3}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\16-x^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\in(-\infty;-4]\cup[4;+\infty)\end{matrix}\right.\)
\(\Leftrightarrow\left\{3\right\}\cup[4;+\infty)\)