Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: điều kiện xác định của bpt \(x+3-\dfrac{1}{x+7}< -\dfrac{1}{x+7}\) là \(x\ne-7\)
\(\Rightarrow x=-7\) không phải là nghiệm của bpt trên
Lại có: \(x+3< 2\\ \Leftrightarrow x< 2-3\\ \Leftrightarrow x< -1\)
\(\Rightarrow x=-7\) thỏa mãn bpt \(x+3< 2\) \(\left(-7< -1\right)\)
a) <=>
Miền nghiệm của hệ bất phương trình là miền không bị gạch sọc ở hình bên (không kể các điểm).
b) <=>
Miền nghiệm của hệ bất phương trình là miền tam giác ABC bao gồm cả các điểm trên cạnh AC và cạnh BC (không kể các điểm của cạnh AB).
\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)
Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì:
\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)
\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).
a) Đkxđ: \(x-5\ne0\Leftrightarrow x\ne5\).
b) Đkxđ: \(x\in R\).
c) Đkxđ: \(x^2-x-2\ge0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\ge0\)
Th1: \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow x\ge2\).
Th2: \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)\(\Leftrightarrow x< 1\).
Đkxđ: \(\left[{}\begin{matrix}x\ge2\\x< 1\end{matrix}\right.\).
d) Đkxđ: \(x\in R\).
Lời giải:
ĐKXĐ: \(x\geq 2\) hoặc \(x\leq \frac{-1}{2}\)
\((x^2-3x)\sqrt{2x^2-3x-2}\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} (x^2-3x)\sqrt{2x^2-3x-2}=0(1)\\ (x^2-3x)\sqrt{2x^2-3x-2}>0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow \left[\begin{matrix} x=0\\ x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.\). Kết hợp ĐKXĐ \(\Rightarrow \left[\begin{matrix} x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.(*)\)
Với (2) \(\Leftrightarrow \left\{\begin{matrix} x^2-3x>0\\ 2x^2-3x-2>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x(x-3)>0\\ (2x+1)(x-2)>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x< 0\\ x>3\end{matrix}\right.\\ \left[\begin{matrix} x>2\\ x< \frac{-1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x< \frac{-1}{2}\\ x>3\end{matrix}\right.(**)\)
Từ $(*)$ và $(**)$ ta có tập nghiệm của bpt là:
\(x=2; x\in (-\infty; \frac{-1}{2}]; x\in [3;+\infty)\)
a) 6x^2 -x-2>=0
\(\Delta=1+24=25\)
\(\Rightarrow\left[{}\begin{matrix}x\le\dfrac{1-5}{2.6}=\dfrac{-1}{3}\\x\ge\dfrac{1+5}{2.6}=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\dfrac{1}{3}x^2+3x+6< 0\Leftrightarrow x^2+9x+18< 0\left\{\Delta=81-4.18=9\right\}\)
\(x_1=\dfrac{-9-3}{2}=-6;x_2=\dfrac{-9+3}{2}=-3\)
\(N_0BPT:\) \(-6< x< -3\)
TXĐ:D=R\{-2;1}
BPT<=>\(\dfrac{\left(x-1\right)^2-\left(x+2\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
<=>\(\dfrac{-3\left(2x+1\right)}{\left(x-1\right)\left(x+2\right)}\ge0\)
Cho 2x+1=0<=>x=-0,5
cho (x-1)(x+2)=0 <=>x=1 hoặc x=-2
Bảng xét dấu:
x -\(\infty\) -2 -0,5 1 +\(\infty\)
f(x) + kxđ - 0 + kxđ -
=>Tập nghiệm T=(-\(\infty\);-2)\(\cup\)[-0,5;1]
a) \(4x^2-x+1< 0\)
Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.
Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.
b) f(x) = - 3x2 + x + 4 = 0
\(\Delta=1^2-4\left(-3\right).4=49\)
\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)
\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)
- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .
rong
Tập nghiệm là \(1\le x< 2\)